Implementing High Power Supply Evaluation Board User's Manual

http://onsemi.com

High Power Supply with the NCP1616, NCP1072 and NCP4390

Description

This evaluation board user's manual provides elementary information about a high efficiency, low light load power consumption reference design that is targeting power adapter or similar type of equipments that accepts 24 V.

The design utilitizes NCP1616 for PFC front stage to assure unity power factor, NCP4390 for current mode LLC power stage with secondary side SR drive. And NCP1072 contorl the fly-back converter for secondary side VCC power supply. The NCP1616 is a high voltage PFC controller with CrM operation. Additionally, it has an innovative Current Controlled Frequency Foldback (CCFF) method to maximizes the efficiency at both nominal and light load condition.

The NCP1072 integrate a fixed frequency current mode controller with a 700 V MOSFET. The NCP1072 offer a high level of integration, including soft-start, frequency-jittering, short-circuit protecton, skip-cycle, a maximum peak current set point, ramp comensation, and a Dynamin Self-Supply. The NCP4390 is an advanced Pulse Frequency Modulated (PFM) controller for LLC resonant converters with Synchronous Rectification (SR) that offers best in class efficiency for isolated DC/DC converters. It employs a current mode control technique based on a charge control, where the triangular waveform from the oscillator is combined with the integarated switch current information to determine the switching frequency. Closed-loop soft start prevents saturation of the error amplifier and allows monotonic rising of the output voltage regardless of load condition. A dual edge tracking adaptive dead time control minimizes the body diode conduction time thus maximizing efficiency.

EVAL. BOARD

Figure 1. Evaluation Board Photo

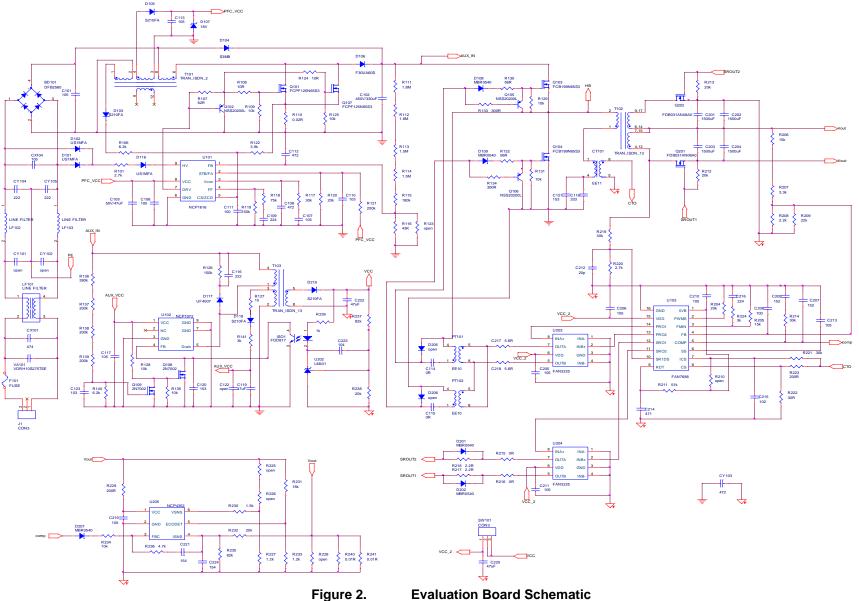
Key Features

- High Voltage Start-Up Circuit with Intergrated
 Brownout Detection.
- Wide Input voltage Range
- High Efficiency
- Fast Line / Load Transient Compensation
- PWM operation mode in light load condition for Improved Efficiency
- Overvoltage Protection
- Auto recovery Overload Protection
- Auto recovery Over Current Protection
- Auto recovery Output Short Circuit Protection
- Adaptive Synchronous Rectification Control with Dual Edge Tracking
- Programmable Dead Times for primary side switches and secondary side Synchronous Rectifiers.

Parameter	Test Conditions	Min	Тур	Max	Unit
Input Voltage	VAC	90	-	264	VAC
Input Voltage Brown Ouput		-	70	-	V _{AC}
Outractionality and	No Load Condition	-	24	-	V _{DC}
Output voltage	Full Load Condition	-	24	-	V _{DC}
Maximum Output Current		-	13		А
Output Power		-	312	-	W
Operating Frequency of LLC	Full Load Condition	100	105	110	kHz
0	110V _{AC} @ Full Load	-	92.74	-	%
System Efficiency	220V _{AC} @ Full Load	-	95.05	-	%
Power Factor	90 VAC ~ 264 VAC @ Over 50% Load		0.95	0.99	η
Board Dimension			215 *125		mm

Table 1. General Informations

Circuit Description


For the PFC front stage, utilizes the NCP1616 to optimize the efficiency and Power Factor throughout the load range. NCP1616 has an intergrated high voltage start up circuit accessible by the HV pin. The rectified input voltage supplies to HV pin at start up. After then Supply to VCC directly from the auxilirary winding of LLC transformer. In operation mode, the NCP1616 achieves power factor correction using the Current Controlled Frequency Foldback (CCFF) topology. In CCFF the circuit operates in the classical Critical Conduction Mode (CrM) when the inductor current exceeds a programmable value. Once the current falls below this preset level, the frequency is linearly reduced, reaching about 26 kHz when the current is zero. Also NCP1616 enter to skip mode at the Input current near the line zero crossing where the current is very low. Both CCFF and Skip mode optimize PFC stage efficiency. To protect the application system under abnormal condition, the NCP1616 has OVP, OCP, Brown Out and FB pin open protection.

In the secondary side, the NCP4390 LLC controller provides a high efficiency and high power density by zero voltage switching (ZVS) of half-bridge MOSFETs. The power stage operates in above resonance area at around the resonant frequency caused by a resonant capacitor Cr and a resonance inductor Lr. It can provide PWM operation for higher efficiency with less frequency variation for light load condition.

The NCP4390 included secondary side SR driver for higher efficiency without additional circuit. It uses a dual edge tracking adaptive gate drive method that anticipates the SR current zero crossing instant with respect to two different time references. The first tracking circuit measures SR conduction time using dv/dt of SR MOSFET drain voltage and uses this information to generate the first adaptive drive signal. The second tracking circuit measures the turn-off extension time which is defined as time duration from the falling edge of the primary side drive to the corresponding SR turn-off instant. This information is then used to generate the second adaptive darive signal and compensation next switching cycle.

To protect the application system under abnormal condition, the NCP4390 has OLP, OCP, OVP and OSP protection.

Evaluation Board Schematic

www.onsemi.com

PCB Layout

Board Demension : 215mm x 125mm PCB material : FR4 Copper Thickness : 2oz

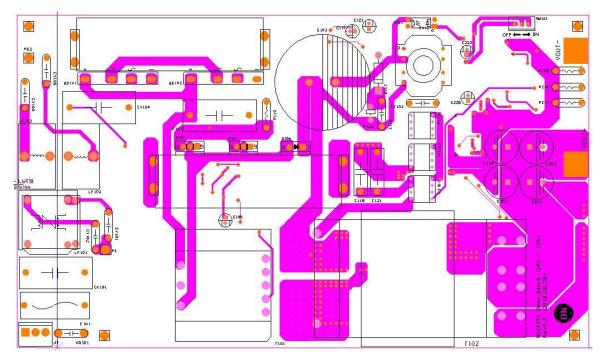


Figure 3. TOP side view

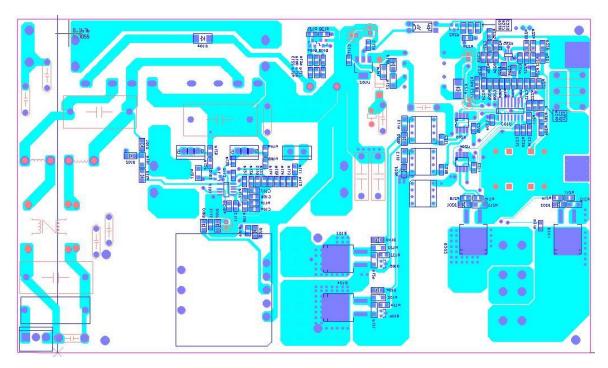


Figure 4.

BOTTOM side view

Board Pictures

Board Demension : 170mm x 100mm PCB material : FR4 Copper Thickness : 2oz

Figure 5. TOP side view

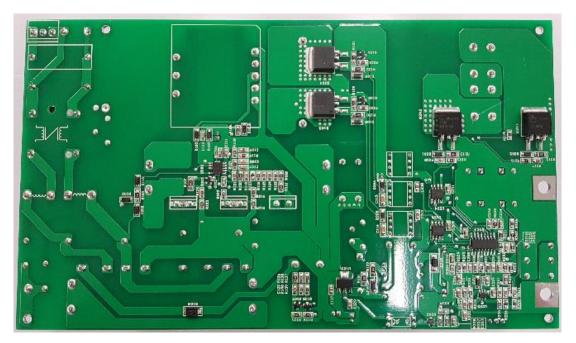


Figure 6.

BOTTOM side view

Table 2. Bill of materials

Reference	Vendor	Part Number	Туре	Value	PC/Board
BD101,BD102	ON	DFB2560	TS-6P-4L	600 V / 25 A	2
CX101	PILKO	PCX2 337/ 470nF (Pitch : 22.5mm)	MKP RADIAL	275 Vac / 470nF	1
CX102	PILKO	PCX2 337/ 1uF (Pitch : 22.5mm)	MKP RADIAL	275 Vac / 1uF	1
CY103	TDK	CD45B2GA472K	Y-Cap	400 V / 4.7nF	1
CY104, CY105	TDK	CD45B2GA222K	Y-Cap	400 V / 2.2nF	2
C101	PILKOR	PCMP 372J / 1uF (Pitch : 22.5mm)	MKP RADIAL	500 V / 1uF	1
C102	SAMYOUNG	KMF-series : 35 x 37	KMF	450 V / 330uF	1
C105,C119,C222, C225	SAMYOUNG	KMF-series : 5 x 11	KMF	50 V / 47uF	4
C106,C107,C113, C117,C205,C206, C210,C211,C213, C219	TDK	C2012X7R1E105K085AB	MLCC_2012	25 V / 1uF	10
C108,C112	TDK	C2012CH1H472J085AA	MLCC_2012	50 V / 4.7nF	2
C109,C216	TDK	C2012X7R1H224K125AE	MLCC_2012	50 V / 220nF	2
C110,C123	TDK	C2012C0G1H103J060AA	MLCC_2012	50 V / 10nF	2
C111,C208	TDK	C2012 C0G1E101J060AA	MLCC_2012	25 V / 100pF	2
C114,C115	Yageo	RC1206JR-07000RL	CHIP_R_3216	0 R	2
C116	Rubicon	FILM Capacitor (10mm Pitch)	Lead type	650 V / 2.2nF	1
C118	PILKOR	PCMP 384 / 33nF 630 V (Pitch : 15mm)	33nF	630 V/ 33nF	1
C120	TDK	C2012C0G1H153J060AA	MLCC_2012	25 V / 15nF	1
C121	PILKOR	PCMP 384 / 15nF 630 V (Pitch : 15mm)	MMKP RADIAL	630 V / 15nF	1
C201,C202,C203, C204	SAMYOUNG	NXB-series : 12.5 x 25	NXH	35 V / 1200uF	4
C207,C209	TDK	C2012C0G1H152J060AA	MLCC_2012	25 V / 1.5nF	2
C212	TDK	C2012 C0G1E200J060AA	MLCC_2012	25 V / 20pF	1
C214	TDK	C2012 C0G1E471J060AA	MLCC_2012	25 V / 470pF	1
C215	TDK	C2012C0G1H102J060AA	MLCC_2012	25 V / 1nF	1
C217,C218	Yageo	RC0805JR-075R6L	CHIP_R_2012	5.6 R	2
C221,C224	TDK	C2012X7R1H154K125AE	MLCC_2012	50 V / 150nF	2
C223	TDK	C2012X7R1H104K125AE	MLCC_2012	50 V / 100nF	1
D101,D102,D116	ON	US1MFA	SOD-123FA	1000 V / 1 A	3
D103,D105,D118, D219	ON	S210FA	SOD-123FA	100 V / 2 A	4
D104	ON	S3MB	SMB	1000 V / 3 A	1
D106	ON	FFPF30UA60S	TO-220F-2L	600 V / 30 A	1
D107	ON	MMSZ18T1G (Zener Diode)	SOD-123	18 V / 0.5 W	1
D108,D109,D201, D202,D207	ON	MBR0540	SOD-123	40 V / 0.5 A	5
D117	ON	UF4007	DO-41	1000 V / 1 A	1
D205,D206	ON	OPEN	OPEN	OPEN	2
F101 (Fuse)	Little Fuse	021 7004.MXP Fast-acting	5 x 20	250 Va / 4A	1
F101 (Holder)	STELVIO	PTF78	5 x 20	Fuse Holder	1
ISO1	ON	FOD817B	4-pin DIP	Optocoupler	1
J1	MOLEX	5273-03A	3-pin	Connector	1
LF101	EMC parts	CV240260SK	133T-F	300 Va / 4 A	1
LF102,LF103	TNC	NVL200N-60150	Vertical	150 uH / 6 A	2

PT101,PT102	FEELUX	EE10/11		2 mH	2
Q101,Q107	ON	FCPF125N65S3	TO-220F	650 V / 24 A	2
Q102,Q105,Q106	ON	NSS20200L	SOT-23	-20 A / 4 A	3
Q103, Q104	ON	FCB199N65S3	D2 PAK	650 V / 14 A	2
Q108,Q109	ON	2N7002	SOT-23	60 V / 115mA	2
Q201, Q202	ON	FDB045AN08A0	D2 PAK	75 V / 235 A	2
R101	Yageo	RC1206JR-07272RL	CHIP_R_3216	2.7 K	1
R106	Yageo	RC0805JR-07622RL	CHIP_R_2012	6.2K	1
R107	Yageo	RC1206JR-07620RL	CHIP_R_3216	62 R	1
R108,R124	Yageo	RC0805JR-07100RL	CHIP_R_2012	10 R	2
R109,R125,R128, R135,R234	Yageo	RC0805JR-07103RL	CHIP_R_2012	10 K	5
R110	PILKO	MPR5W 0.02ΩJ	Metal plate R	0.02 R	1
R111, R112	Yageo	RC0805JR-07185RL	CHIP_R_2012	1.8M	2
R113, R114	Yageo	RC0805JR-07155RL	CHIP_R_2012	1.5M	2
R115	Yageo	RC0805JR-07184RL	CHIP_R_2012	180 K	1
R116	Yageo	RC0805JR-07433RL	CHIP_R_2012	43 K	1
R117,R214,R219	Yageo	RC0805JR-07303RL	CHIP_R_2012	30 K	3
R118	Yageo	RC0805JR-07753RL	CHIP_R_2012	75 K	1
R119	Yageo	RC0805JR-07154RL	CHIP_R_2012	150 K	1
R120,R232,R238	Yageo	RC0805JR-07203RL	CHIP_R_2012	20 K	3
R121,R137,R138, R139	Yageo	RC0805JR-07204RL	CHIP_R_2012	200 K	4
R122	Yageo	RC0805JR-07392RL	CHIP_R_2012	3.9 K	1
R126	Yageo	Axial type 1/2W	Axial 1/2W	150 K	1
R127	Yageo	RC1206JR-07100RL	CHIP_R_3216	10 R	1
R129,R131	Yageo	RC1206JR-07103RL	CHIP_R_3216	10 K	2
R130,R132	Yageo	RC1206JR-07560RL	CHIP_R_3216	56 R	2
R133,R134	Yageo	RC0805JR-07301L	CHIP_R_2012	300R	2
R136	Yageo	RC0805JR-07474RL	CHIP_R_2012	470 K	1
R140	Yageo	RC0805JR-07622RL	CHIP_R_2012	6.2 K	1
R141	Yageo	RC1206JR-07302RL	CHIP_R_3216	3 K	1
R204	Yageo	RC0805JR-07203RL	CHIP_R_2012	20 K	1
R205,R206	Yageo	RC0805JR-07153L	CHIP_R_2012	15 K	2
R207	Yageo	RC0805JR-07332L	CHIP_R_2012	3.3 K	1
R208	Yageo	RC0805JR-07222L	CHIP_R_2012	2.2 K	1
R209	Yageo	RC0805JR-07223L	CHIP_R_2012	22 K	1
R211	Yageo	RC0805JR-07513RL	CHIP_R_2012	51 K	1
R212,R213	Yageo	RC1206JR-07203RL	CHIP_R_3216	20 K	2
R215,R216	Yageo	RC0805JR-07000RL	CHIP_R_2012	0 R	2
R217,R218	Yageo	RC0805JR-072R2L	CHIP_R_2012	2.2 R	2
R220	Yageo	RC0805JR-07272L	CHIP_R_2012	2.7 K	1
R221	Yageo	RC0805JR-07303L	CHIP_R_2012	30 K	1
R222	Yageo	RC0805JR-07300RL	CHIP_R_2012	30 R	1
R223,R229	Yageo	RC0805JR-07201L	CHIP_R_2012	200R	2
R224	Yageo	RC0805JR-07302L	CHIP_R_2012	3 K	1
R227,R233	Yageo	RC0805JR-07122L	CHIP_R_2012	1.2 K	2
R230	Yageo	RC0805JR-07152L	CHIP_R_2012	1.5 K	1
R231	Yageo	RC0805JR-07183L	CHIP_R_2012	18 K	1
R235,R237	Yageo	RC0805JR-07823L	CHIP_R_2012	82 K	1
R236	Yageo	RC0805JR-07472L	CHIP_R_2012	4.7 K	1
R239	Yageo	RC0805JR-07102RL	CHIP_R_2012	1 K	1

R240,R241	PILKO	MPR5W 0.01ΩJ	Metal plate R	0.01 R	2
SW101	DECO	AT1D-2M3	Toggle SW	3pin	1
CT101	FEELUX	EE10/11		45:1	1
T101	FEELUX	PQ4121		230uH	1
T102	FEELUX	SRV5018		300uH	1
T103	FEELUX	RM6-8pin		1.2mH	1
U101	ON	NCP1616	SOIC-9	PFC	1
U102	ON	NCP1072	SOT-223	Flyback	1
U103	ON	NCP4390	SOIC-16	LLC	1
U202	ON	LM431SBCM3X	SOT-23	Shunt	1
U203,U204	ON	FAN3225	SOIC-8	Gate Driver	2
U205	ON	NCP4352	TSOP-6	CC/CV	1
VA101	HIEL	HVR431D10	VARISTOR		1

Transformer Specifications

There are five kinds of transformer used in this EVB. PFC,LLC,Fly-back,Current Sensing transformer and Pulse Transforemr.

• PQ4121

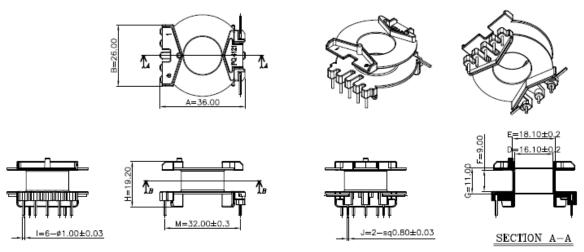


Figure 7.

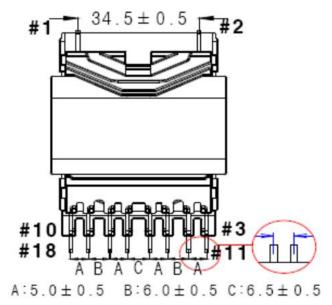

Transformer dimension and shapes (PFC)

Table 3.Transformer Specification (PFC)

	Pin			Winding	Ba	rrier Tap	e	
	(Start → Finish)	Wire	Turns	Winding Method	TOP	BOT	Ts	
Np	6 → 8	0.1φ×60 USTC	44	Solenoid winding	-	-	-	
Insulation : Pol	yester Tape t =	0.025mm, 2Lay	vers					
NA	4→3	0.2φ	2		3mm	3mm	1	
Insulation : Pol	yester Tape t =	0.025mm, 2Lay	vers					
NB	1→2	0.2φ	6		3mm	3mm	1	
Insulation : Pol	Insulation : Polyester Tape t = 0.025mm, 2Layers							
Copper Tape	→5	Copper	1	9mm				
Insulation : Pol	Insulation : Polyester Tape t = 0.025mm, 2Layers							

	Pin	Spec.	RemarkC
Inductance	6-8	230uH	100kHz, 1V

• SRV5018EV

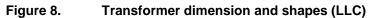
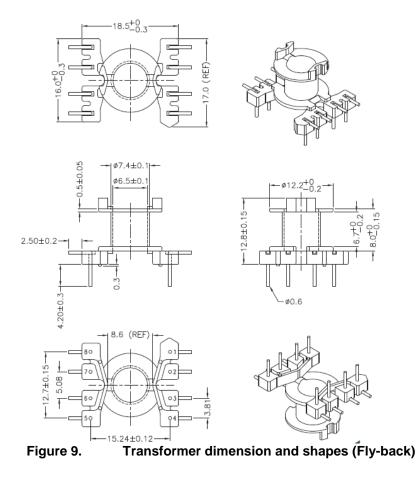
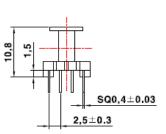



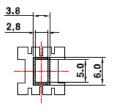
 Table 4.Transformer Specification (LLC)

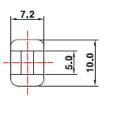
	Pin	Wire	Turne	Winding	Ba	rrier Tap	e	
	(Start \rightarrow Finish)	vviie	Turns	Method	TOP	BOT	Ts	
Np	$1 \rightarrow 2$	0.1φ×60 USTC	28	Solenoid winding	-	-	-	
Insulation	: Polyester Tape, t = 0).025mm, 2Lay	vers					
Ns	4→7 12→15	0.10φ×150 USTC	3	Bifilar	-	-	-	
Insulation	: Polyester Tape, t = 0).025mm, 1Lay	vers					
Ns	6→9 14→17	0.10φ×150 USTC	3	Bifilar	-	-	-	
Insulation	Insulation : Polyester Tape, t = 0.025mm, 2Layers							

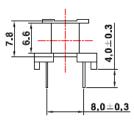
	Pin	Spec.	Remark
Inductance Lm	1−2 (other pin open)	330uH	100kHz, 1V
Inductance Llkg	12-10 (4,7,6,9,12,14,15,17 pin short)	58uH	100kHz, 1V

• RM6-8pin

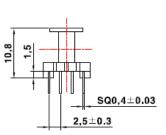


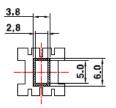

Table 5.Transformer Specification (Fly-back)

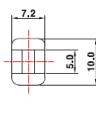

	Pin	Miro	Wire Turns	Winding	Ba	rrier Tap	e	
	(Start \rightarrow Finish)	vvie	Turns	Method	TOP	BOT	Ts	
Np	$1 \rightarrow 4$	0.2φ	48	Solenoid winding	-	-	-	
Insulation	Insulation : Polyester Tape t = 0.025mm, 2Layers							
NA	$3 \rightarrow 2$	0.2φ	6		2mm	2mm	1	
Insulation	Insulation : Polyester Tape t = 0.025mm, 2Layers							
Ns	$5 \rightarrow 8$	0.2φ	7		2mm	2mm	1	
Insulation	Insulation : Polyester Tape t = 0.025mm, 2Layers							

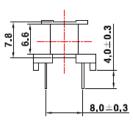

	Pin	Spec.	Remark
Inductance	1-4	1.2 mH	100kHz, 1V

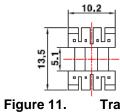
• EE1011


Figure 10. Transformer dimension and shapes (Current Sensing Transformer)

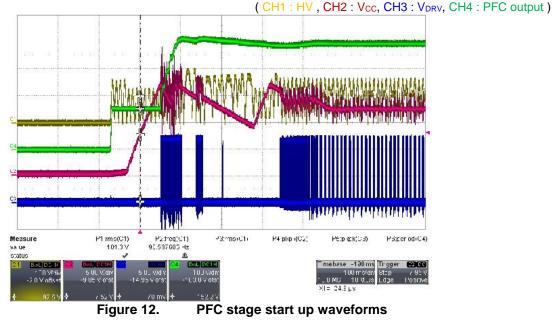

Table 6.Transformer Specification (Current Sensing Transformer)


			Wire Turns	Winding	Ba	Barrier Tap		
	$Pin(S \rightarrow F)$	vvie	Turns	Method	TOP	BOT	Ts	
Ns	8→ 5	0.15φ	44	Solenoid	1.5	1.5	3	
Insulation : Poly	Insulation : Polyester Tape t, 3Layers							
Np	1→4	0.6φ	1	Solenoid	1.5	1.5	1	
Insulation : Poly	Insulation : Polyester Tape t, 3Layers							


	Pin	Spec.	Remark
Inductance	8-5		100kHz, 1V


• EE1011

Transformer dimension and shapes (Pulse Transformer)


Table 7.Transformer Specification (Pulse Transformer)

		Wire		Winding	Barrier Tape			
	$Pin(S \rightarrow F)$	vvie	Turns	Method		BOT	Ts	
Np	1→ 4	0.15φ	50	Solenoid	0	0	0	
Insulation : Poly	Insulation : Polyester Tape t, 3Layers							
Ns	5→8	0.15φ	50	Solenoid	1.5	1.5	3	
Insulation : Polyester Tape t, 3Layers								

	Pin	Spec.	Remark	
Inductance	1-4, 5-8	2mH	100kHz, 1V	

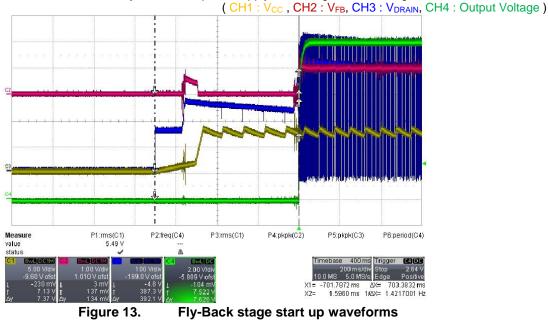
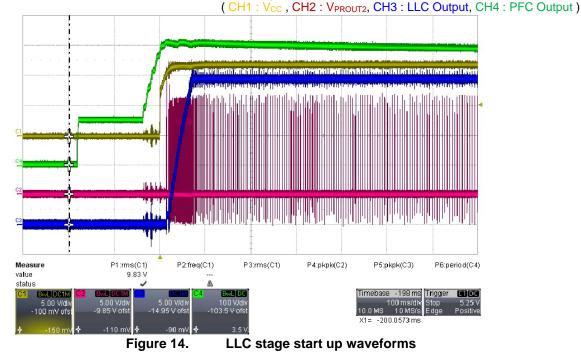
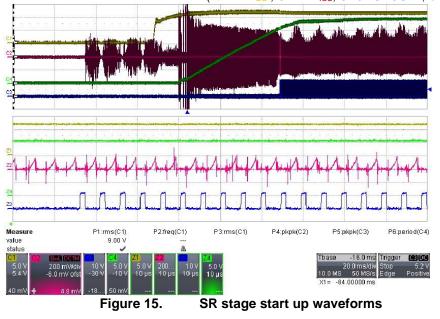

Start up PFC stage.

Figure 12 show that the NCP1616 start up waveforms by high voltage start up circuit. The output voltage reflects rectifiered voltage around 150 V by bridge diodes until the V_{CC} voltage reaches start up threshold 17 V. Once V_{CC} is charged to the start up threshold voltage, the HV start up regulator is disabled and the controller is enabled. After PFC start up switching by Dynimic Self Supply of NCP1616, V_{CC} bias comes from the auxiliary winding of PFC transformer. After then PFC stage operating by V_{CC} supply of PFC transformer auxiliary winding and the PFC output voltage regulated target voltage.

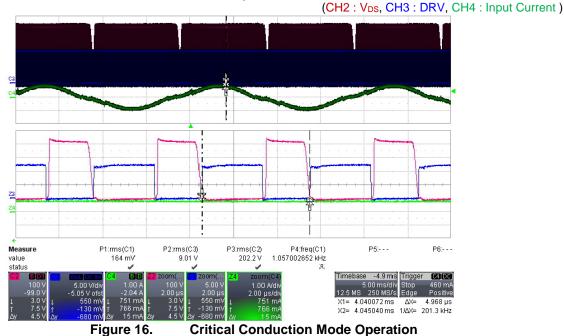

Start up Fly-back stage

When the power supply is first powerd from the Drain pin, the internal current source is biased and charges up the Vcc capacitor. Once the voltage on this Vcc reaches the Vcc on level, the current source turns off and pulses are delivered by the output stage. And then auxiliary Vcc winding supply to the Vcc. But the PFC output detection circuit is include for stable start up LLC stage. When the Vcc voltage reaches turn on threshold level, PFC output detection circuit pull down the FB pin voltage til the output voltage reaches around 370 V. During this time, NCP1072 is not transfer to the output. After then the PFC output voltage over than around 370 V, Fly-back start up and supply Vcc voltage for LLC starge.


Start up LLC stage

The NCP4390 located in the secondary side and the supply voltage is charged by the NCP1072. To prevent OCP at start up codnition, the V_{CC} voltage should be supply after the PFC output voltage reaches around target level. As you can see the below waveforms, V_{CC} voltage supply to the LLC stage after the PCB voltage reaches around target level. When the V_{CC} voltage reaches turn on threshold level, NCP4390 start up switching and the LLC output start with Soft Start function.

Start up SR stage


The NCP4390 integrated in SR driver with LLC controller and directly driving SR MOSFET in secondary side. During no load or light load condition, NCP4390 is not generate SR gate signal. When the oupt load increased, the Current Sensing Transformer reflect a primary side average current information to Vics pin. When the Vics pin peak voltage reaches threshold level around 0.2 V, NCP4390 generate SR gate signal as like below waveforms.

(CH1: V_{CC}, CH2: V_{ICS}, CH3: SROUT1, CH4: Output Voltage)

Current Controlled Frequency Foldback

The NCP1616 PFC controller achieves power factor correction using the novel Current Controlled Frequency Foldback (CCFF) topology. In this mode, the circuit operates in classical Critical Conduction Mode (CrM) with ZCD when the inductor current exceeds a programmable value. When the current falls below this preset level, the NCP1616 linearly reduces the operating frequency down to a minimum of about 26 kHz when input current reaches zero.

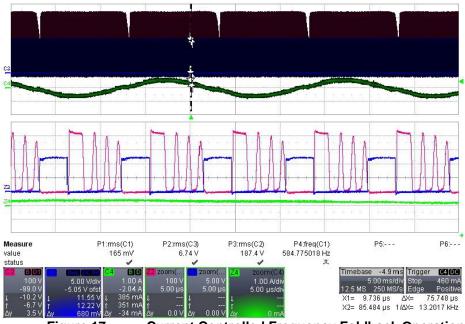
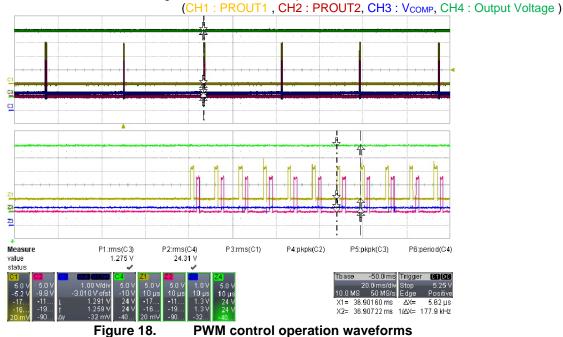
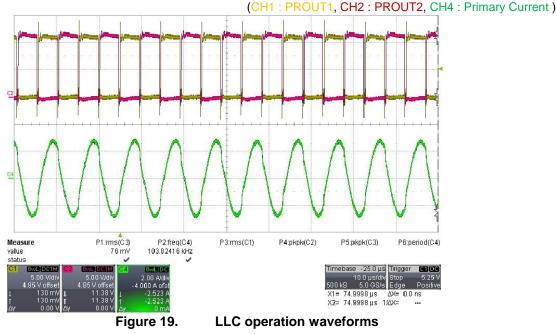
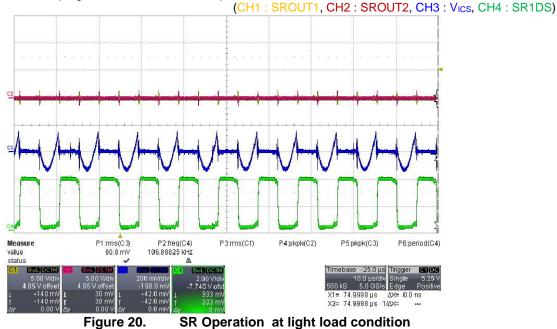
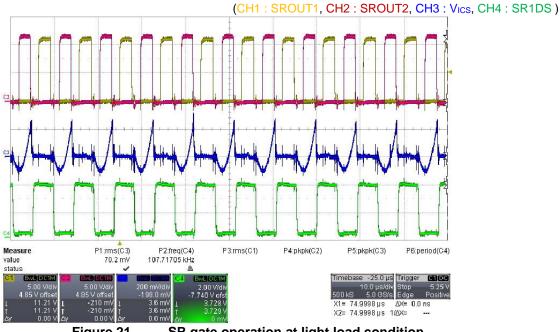



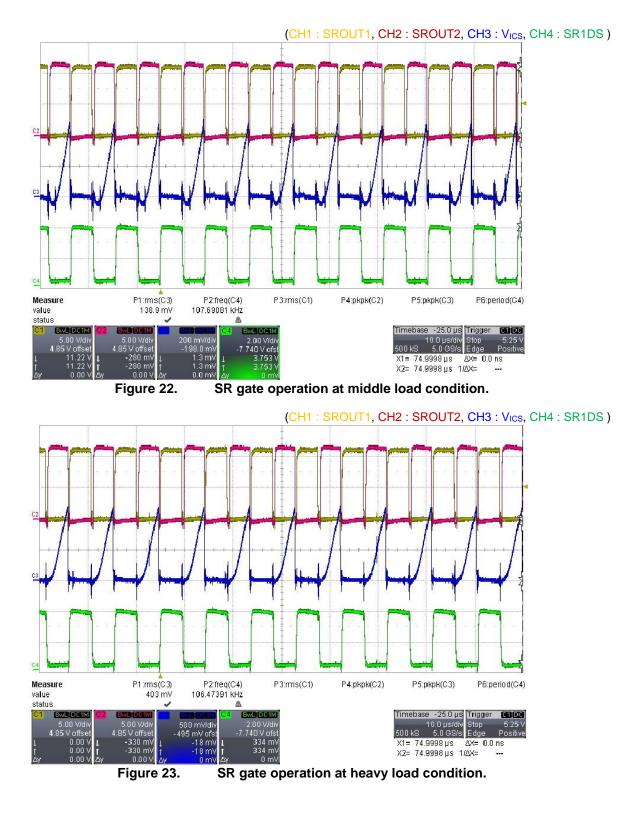
Figure 17. Current Controlled Frequency Foldback Operation


PWM Operation At Light Load Condition

The conventional PFM control method at the light load condition, it has a poor efficiency due to the high frequency operation and the large circulating primary side current. To improve the light load efficiency, NCP4390 employs PFM operation at light load condition. In the PWM control, the switching frequency is fixed by the clamped internal COMP voltage and the duty cycle is determined by the difference between COMP voltage and the PWM mode threshold voltage. The PWM operation threshold can be programmed between 1.5 V and 1.9 V using a resistor on the PWM pin.


LLC Operation


Below waveform is normal operation mode of LLC in heavy load condition. The LLC operated in above resonance area.



Synchronous Rectification control and Normal Operation

The NCP4390 controls the SR MOSFET using the dv/dt of SR MOSFET drain voltage. Before SR gate is turned on, SR body diode conducts as the conventional diode rectifier. When the Vics peak voltage reaches threshold level around 0.2 V, NCP4390 generate the SR gate signal. At this time, to guarantee stable SR operation during light load operation, the NCP4390 operate in Shrink mode. During this time, the SR dead time is increased resulting in SR gate shink. And then, the SR dead time is reduced to the programmed value when Vics peak value rises about 0.25 V.

System Efficiency & PF

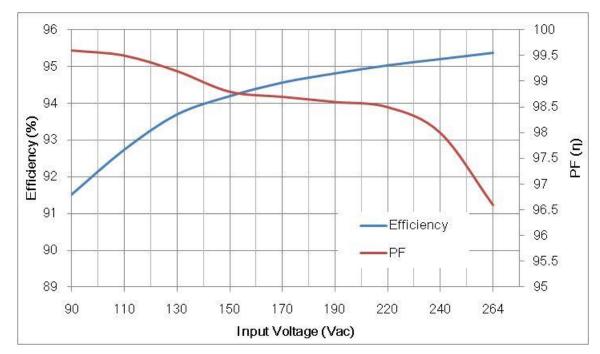


Figure 24 presents the system efficiency of the EVB with various input voltage. The EVB demonstrated that the 312W power application can approach 95% peak system effiency at high line. Also the PF is over 0.96 at wide input range.

Figure 24. System efficiency by the Input Voltage.

Table 8. Measuring results of Efficiency & PF								
Vac	90	110	130	150	170	190		

Vac	90	110	130	150	170	190	220	240	264
Efficiency	91.52%	92.74%	93.70%	94.20%	94.57%	94.82%	95.04%	95.21%	95.38%
PF	99.60%	99.50%	99.20%	98.80%	98.70%	98.60%	98.50%	98.00%	96.60%

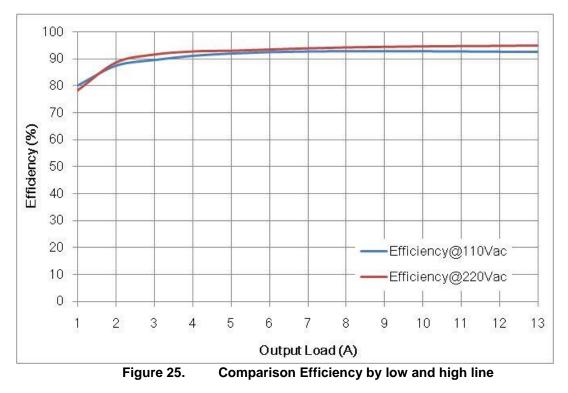


Figure 25 and Figure 26 show system efficiency & PF by the output load condition, respectively.

Table 9. Measuring	Table 9. Measuring results of Efficiency by load condition.								
Output Current	1 A	2 A	3 A	4 A	5 A	6 A			
Effiency@110Vac	80.27%	87.65%	89.73%	91.31%	92.14%	92.67%			
Efficiency@220Vac	78.45%	88.77%	91.72%	92.88%	93.11%	93.57%			
		-	-						
Output Current	7 A	8 A	9 A	10 A	11 A	12 A	13A		
Effiency@110Vac	92.91%	93.01%	93.01%	92.99%	93.15%	92.82%	92.74%		
Efficiency@220Vac	94.02%	94.34%	94.55%	94.59%	94.73%	94.93%			

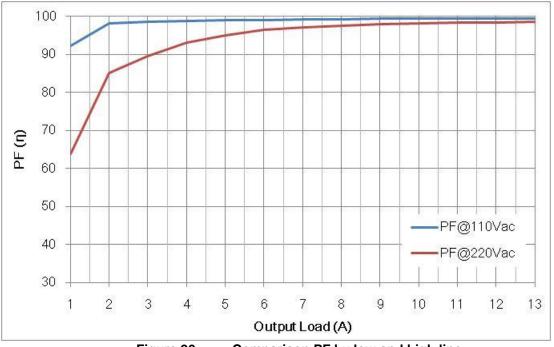
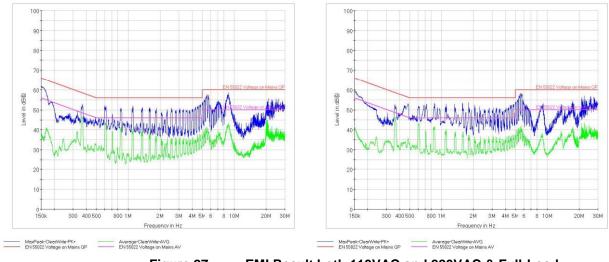



Figure 26. Comparison PF by low and high line

Output Current	1 A	2 A	3 A	4 A	5 A	6 A	
PF@110Vac	92.2%	98.2%	98.6%	98.8%	98.9%	99.1%	
PF@220Vac	63.9%	85.0%	89.6%	93.0%	95.0%	96.5%	
	-		1	1	1	1	r
Output Current	7 A	8 A	9 A	10 A	11 A	12 A	13 A
PF@110Vac	99.2%	99.3%	99.4%	99.4%	99.5%	99.5%	99.5%
PF@220Vac	97.2%	97.6%	97.9%	98.1%	98.3%	98.4%	98.5%

Conducted Emission

The following fiures illustrate conduted EMI signatures under full loading for different input line voltage levels.

Figure 27.

EMI Result both 110VAC and 220VAC & Full-Load

ON Semiconductor and the i are registered trademarks of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries. SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of interly or indirectly any claim of personal injury of death associated with such unintended or unauthorized use personable and to regligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employee. This li

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421-32 700 2010

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81–3–5817–1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your loca Sales Representative