
i.MXWindows 10 IoT User’s Guide
for NXP i.MX Platform

Document Number: IMXWGU
Rev. W1.1.0, 4/2020

Copyright © Microso� Corporation. All rights reserved.
Copyright © 2019-2020 NXP Semiconductors.

Contents

1 Overview 6
1.1 Audience . 6
1.2 Conventions . 6
1.3 Directories . 6
1.4 References . 6

2 Introduction 8

3 Feature List per Board 9

4 Flash a Windows IoT Core image 12

5 Basic Terminal Setup 14

6 Basic Board Setup 15

7 Booting WinPE and Flashing eMMC 17
7.1 Identifying boot loader location . 17
7.2 Preparing an FFU to be flashed to eMMC . 18
7.3 Creating and deploying the WinPE Image . 18

8 Windows 10 IoT Boot Sequence on i.MX Platform 21
8.1 On-chip ROM code . 21
8.2 SPL . 22
8.3 OP-TEE . 24
8.4 U-Boot Proper . 26
8.5 UEFI . 27
8.6 SD/eMMC Layout . 29

9 Securing Peripherals on i.MX using OP-TEE 30
9.1 OP-TEE . 30
9.2 Windows . 31

10 Building Windows 10 IoT Core for NXP i.MX Processors 32
10.1 Building the BSP . 32

10.1.1 Required Tools . 32
10.1.1.1 Visual Studio 2017 . 32

NXP Semiconductors 3

Contents

10.1.1.2 Windows Kits fromWindows 10, version 1809 33
10.1.1.3 IoT Core OS Packages . 33

10.1.2 One-Time Environment Setup . 33
10.1.3 Creating test FFU . 34

10.1.3.1 Start generating the FFU . 34
10.1.3.2 Building the FFU for other boards 35

10.1.4 Building the FFU with the IoT ADK AddonKit 35
10.1.5 How to use the signed prebuilt HAL drivers with the BSP 36

11 Building and Updating ARM32 Firmware 38
11.1 Setting up your build environment . 38
11.2 Building the firmware . 39
11.3 Adding updated firmware to your ARM FFU . 39
11.4 Deploying firmware to an SD card manually . 40

11.4.1 Bootable Firmware without installing an FFU 40
11.4.2 Deploying U-Boot and OP-TEE (firmware_fit.merged) for development 40
11.4.3 Deploying UEFI (uefi.fit) for development . 41
11.4.4 Updating the TAs in UEFI . 41

11.4.4.1 Clearing RPMB . 41

12 Building and Updating ARM64 Firmware 42
12.1 Setting up your build environment . 42
12.2 Building the firmware . 43
12.3 Adding updated firmware to your ARM64 FFU . 47
12.4 Deploying firmware to an SD card manually . 48

12.4.1 Deploying U-Boot, ATF, OP-TEE (flash.bin) and UEFI (uefi.fit) for development . 48

13 Adding New Boards and Drivers to the BSP 49
13.1 Adding a New Board . 49

13.1.1 Initialize a new board configuration . 49
13.1.2 Setup the solution in Visual Studio . 49
13.1.3 Update the firmware for your board . 50
13.1.4 Build the FFU in Visual Studio . 50
13.1.5 Board Package Project Meanings . 51

13.2 Adding a New Driver . 51
13.2.1 Adding a New Driver to the Solution . 51
13.2.2 Adding a Driver to the FFU . 52

NXP Semiconductors 4

Contents

14 i.MX Porting Guide 54
14.1 U-Boot . 54

14.1.1 U-Boot Configuration Options . 55
14.1.2 Adding a new board to U-Boot . 57

14.2 OP-TEE . 58
14.3 Setting up your build enviroment to build firmware_fit.merged 59
14.4 Flash firmware_fit.merged to your SD card. 59

14.4.1 Testing SPL . 60
14.4.2 Testing OP-TEE . 60
14.4.3 Testing U-Boot . 61

14.5 UEFI . 62
14.5.1 DSC and FDF file . 62
14.5.2 Board-specific Initialization . 62
14.5.3 SMBIOS . 63
14.5.4 ACPI Tables . 63

14.5.4.1 SDHC . 63
14.5.4.2 PWM . 65

14.5.5 Security TAs . 65
14.5.6 Building UEFI . 66
14.5.7 Testing UEFI . 66

14.6 Booting Windows . 66

15 Updating the BSP port 67
15.1 Reworked firmware build system . 67
15.2 FIT load for OP-TEE and U-Boot Proper inside of SPL 67
15.3 FIT loading UEFI inside of U-Boot Proper . 67
15.4 Miscelaneous U-Boot defconfig settings . 68

16 Windows 10 IoT Video Processing Unit on i.MX Platform 69
16.1 Features . 69
16.2 Limitations . 69
16.3 How to play video . 69

17 Revision History 70

NXP Semiconductors 5

1 Overview
User’s guide describes the process of building and installing theWindows 10 IoTOS BSP (Board Support
Package) for the i.MX platform. It also covers special i.MX features and how to use them.

Guide also lists the steps to run the i.MX platform, including board DIP switch settings, and instructions
on the usage and configuration of U-Boot bootloader.

Features covered in this guide may be specific to particular boards or SOCs. For the capabilities of a
particular board or SOC, see the i.MX Windows 10 IoT Release Notes (IMXWIN10RN).

1.1 Audience

This chapter is intended for so�ware, hardware, and system engineers who are planning to use the
product, and for anyone who wants to knowmore about the product.

1.2 Conventions

This chapter uses the following conventions:

• Courier New font: This font is used to identify commands, explicit command parameters, code
examples, expressions, data types, and directives.

1.3 Directories

BSP - Generated at build time. Contains Board Support Packages for the IoT ADK AddonKit.

build - Contains Board Packages, build scripts, and the VS2017 solution file.

driver - Contains driver sources.

documentation - Contains usage documentation.

hal - Contains hal extension sources.

1.4 References

For more information about Windows 10 IoT Core, see Microso� online documentation.

NXP Semiconductors 6

https://github.com/ms-iot/iot-adk-addonkit

CHAPTER 1. OVERVIEW

• http://windowsondevices.com

The quick start guides contain basic information on the board and setting it up. They are on the NXP
website.

• SABRE Platform Quick Start Guide (IMX6QSDPQSG)
• SABRE Board Quick Start Guide (IMX6QSDBQSG)
• i.MX 6UltraLite EVK Quick Start Guide (IMX6ULTRALITEQSG)
• i.MX 6ULL EVK Quick Start Guide (IMX6ULLQSG)
• i.MX 6SoloX Quick Start Guide (IMX6SOLOXQSG)
• i.MX 7Dual SABRE-SD Quick Start Guide (SABRESDBIMX7DUALQSG)
• i.MX 8M Quad Evaluation Kit Quick Start Guide (IMX8MQUADEVKQSG)
• i.MX 8MMini Evaluation Kit Quick Start Guide (8MMINIEVKQSG)
• i.MX 8M Nano EVK Quick Start Guide(IMX-8M-Nano-QSG)

Documentation is available online at nxp.com

• i.MX 6 information is at http://nxp.com/iMX6series
• i.MX SABRE information is at http://www.nxp.com/imxSABRE
• i.MX 6UltraLite information is at http://www.nxp.com/imx6ul
• i.MX 6ULL information is at http://www.nxp.com/imx6ull
• i.MX 6SoloX information is at http://www.nxp.com/imx6sx
• i.MX 7Dual information is at http://www.nxp.com/imx7d
• i.MX 8 information is at http://www.nxp.com/imx8

NXP Semiconductors 7

http://windowsondevices.com
http://www.nxp.com/files/32bit/doc/quick_start_guide/SABRESDP_IMX6_QSG.pdf
http://www.nxp.com/files/32bit/doc/quick_start_guide/SABRESDB_IMX6_QSG.pdf
http://cache.nxp.com/files/32bit/doc/quick_start_guide/IMX6ULTRALITEQSG.pdf
http://www.nxp.com/iMX6ULLEVK/QSG
http://www.nxp.com/docs/en/user-guide/IMX6SOLOXQSG.pdf
http://www.nxp.com/docs/en/user-guide/SABRESDBIMX7DUALQSG.pdf
https://www.nxp.com/docs/en/user-guide/IMX8MQUADEVKQSG.pdf
https://www.nxp.com/docs/en/quick-reference-guide/8MMINIEVKQSG.PDF
https://www.nxp.com/docs/en/quick-reference-guide/IMX-8M-Nano-QSG.pdf
http://www.nxp.com
http://nxp.com/iMX6series
http://www.nxp.com/imxSABRE
http://www.nxp.com/imx6ul
http://www.nxp.com/imx6ull
http://www.nxp.com/imx6sx
http://www.nxp.com/imx7d
http://www.nxp.com/imx8

2 Introduction

The i.MX Windows 10 IoT BSP is a collection of binary files, source code, and support files you can use
to create a bootable Windows 10 IoT image for i.MX development systems.

Before you start, see the Feature List per Board chapter. This section lists all the i.MX boards covered
by this BSP and also contains a list of possible features.

If you have downloaded a standalone Windows 10 IoT core image, please go to Flash a Windows IoT
Core image to create a bootable SD card.

If you have downloaded an archive with BSP sources, please go to Building Windows 10 IoT Core for
NXP i.MX Processors and check the process of the building the BSP and Boot firmware. A�er that you
can prepare bootable SD card according to Flash a Windows IoT Core image chapter.

NXP Semiconductors 8

3 Feature List per Board

Table 3.1: Overview of the currently supported features for every board.

Feature MCIMX6Q-SDB/SDP MCIMX6QP-SDB MCIMX6DL-SDP MCIMX6SX-SDB

BSP name Sabre_iMX6Q_1GB Sabre_iMX6QP_1GB Sabre_iMX6DL_1GB Sabre_iMX6SX_1GB
SD Card boot Y Y Y Y
eMMC boot Y Y Y N*
Audio Y Y Y Y
GPIO Y Y Y Y
I2C Y Y Y Y
Ethernet Y Y Y Y
PWM Y Y Y Y
SD Card Y Y Y Y
eMMC Y Y Y N*
SPI (master) Y Y Y Y
Display Y Y Y Y
UART Y* Y* Y* Y*
USB (host) Y Y Y Y
PCIe Y Y Y Y
TrEE Y Y Y Y
M4 N/A N/A N/A N**
Processor PM Y Y Y Y
Device PM Y Y N** N**
LP standby N** N** N** N**
Display PM Y Y Y Y
DMA Y Y Y Y

Feature
MCIMX6UL-

EVK
MCIMX6ULL-

EVK MCIMX7SABRE
MCIMX8M-
EVK

8MMINILPD4-
EVK

8MNANOD4-
EVK

BSP
name

EVK_iMX6UL_512MBEVK_iMX6ULL_512MBSabre_iMX7D_1GBNXPEVK_IMX8M_4GBNXPEVK_IMX8M_Mini_2GBEVK_IMX8MM_2GB

SD Card
boot

Y Y Y Y Y Y

eMMC
boot

N* N* Y Y Y Y

NXP Semiconductors 9

CHAPTER 3. FEATURE LIST PER BOARD

Feature
MCIMX6UL-

EVK
MCIMX6ULL-

EVK MCIMX7SABRE
MCIMX8M-
EVK

8MMINILPD4-
EVK

8MNANOD4-
EVK

Audio Y Y Y Y Y Y
GPIO Y Y Y Y Y Y
I2C Y Y Y Y Y Y
Ethernet Y Y Y Y Y Y
PWM Y Y Y Y Y Y
SD Card Y Y Y Y Y Y
eMMC N* N* Y Y Y Y
SPI
(master)

N* N* Y N/A Y Y

Display Y Y Y Y Y Y
UART Y* Y* Y* Y* Y* Y*
USB
(host)

Y Y Y Y Y Y

PCIe N/A N/A Y Y Y Y
TrEE Y N Y Y Y Y
M4 N/A N/A N** N** N** N**
Processor
PM

Y Y Y Y Y Y

Device
PM

N** N** N** N** N** N**

LP
standby

N** N** N** N** N** N**

Display
PM

Y Y Y Y Y Y

DMA Y Y Y Y Y Y
VPU N/A N/A N/A Y Y N/A

Legend Meaning

Y Enabled
Y* To enable the UART, the kernel debugger must be disabled by running the following

command on the device and rebooting. The UART exposed is the same UART that the
kernel debugger uses. bcdedit /debug off

N/A Feature not applicable
N* Feature not enabled - feature is not available in default board configuration
N** Feature not enabled - feature is not currently supported

NXP Semiconductors 10

CHAPTER 3. FEATURE LIST PER BOARD

Legend Meaning

PM Power management
LP Low power

Not all features of a given subsystemmaybe fully enabled and/or optimized. If you encounter issues
with supported features, please open an issue.

NXP Semiconductors 11

4 Flash aWindows IoT Core image
This chapter describes theprocessof creating abootable SDcard fromadownloadedFFU file containing
an image of Windows 10 IoT Core system.

1) Download and Start the Windows IoT Core Dashboard utility.
2) Navigate to “Set up a new device” tab.
3) Select NXP [i.MX6/iMX7/i.MX8] under “Device Type” list box.
4) Select Custom under “OS Build” list box.
5) Click Browse and navigate and select the FFU file you have downloaded or created by building
the BSP.

6) Plug the SD card into the PC, and choose this SD card in “Drive” list box.
7) Set the Device Name and Administrator Password for your device.
8) Check the I accept the so�ware license terms checkbox (lower right) and click Install.

Figure 4.1: IoT Dashboard

Windows IoT Core Dashboard will now open a command window and use DISM (Deployment Image

NXP Semiconductors 12

https://go.microsoft.com/fwlink/p/?LinkId=708576

CHAPTER 4. FLASH AWINDOWS IOT CORE IMAGE

Servicing and Management Tool) to flash the FFU file to your microSD card. Make sure you back up any
files on your card before proceeding. Flashing will erase all previously stored data on the SD card.

Figure 4.2: Flash

NOTE: Alternatively, you can also use the DISM command to manually flash the image:

1 dism.exe /Apply-Image /ImageFile:"D:\flash.ffu" /ApplyDrive:\.\PhysicalDriveX /SkipPlatformCheck

Where “PhysicalDriveX” is a name of your SDCARD physical drive. You can use wmic command to see
your physical drives:

1 wmic diskdrive get Name, Manufacturer, Model, InterfaceType, MediaType, SerialNumber

For more information about flashing the FFU onto an SD Card using the Windows IoT Core Dashboard,
follow the IoT Core Manufacturing Guide.

Once the SD card will be created, plug the card into the board and power up the board. The board
should successfully boot up. If not, check the configuration of the boot switches - chapter Basic Board
Setup. Optionally you can follow the steps in Basic Terminal Setup to establish serial connection
between the host PC and the target IoT device to check output from U-Boot and UEFI.

NXP Semiconductors 13

https://docs.microsoft.com/en-us/windows-hardware/manufacture/iot/create-a-basic-image#span-idflashanimagespanflash-the-image-to-a-memory-card

5 Basic Terminal Setup

During the boot, you can check the U-Boot and UEFI firmware output on the host PC by using the serial
interface console. In the case you don’t see any output on the connected display, for example, this
might be helpful to confirm that the board is booting. Common serial communication applications
such as HyperTerminal, Tera Term, or PuTTY can be used on the host PC side. The example below
describes the serial terminal setup using Tera Term on a host running Windows OS. The i.MX boards
connect the host driver using the micro-B USB connector.

1. Connect the target and the PC running Windows OS using a cable mentioned above.
2. Open Tera Term on the PC running Windows OS and select the settings as shown in the following
figure.

Figure 5.1: Tera Term settings for terminal setup

The USB to serial driver for FTDI chip can be found under http://www.�dichip.com/Drivers/VCP.htm.
The FTDI USB to serial converters provide up to four serial ports. Users need to select the first port
(COM) in the terminal setup. The USB to serial driver for CP210x chip can be found under https://www.
silabs.com/products/development-tools/so�ware/usb-to-uart-bridge-vcp-drivers. The CP210x USB to
serial converters provide up to two serial ports.

NXP Semiconductors 14

http://www.ftdichip.com/Drivers/VCP.htm
https://www.silabs.com/products/development-tools/software/usb-to-uart-bridge-vcp-drivers
https://www.silabs.com/products/development-tools/software/usb-to-uart-bridge-vcp-drivers

6 Basic Board Setup

Feature MCIMX6Q-SDB/SDP MCIMX6QP-SDB MCIMX6DL-SDP

BSP name Sabre_iMX6Q_1GB Sabre_iMX6QP_1GB Sabre_iMX6DL_1GB
Debug UART* J509 J509 J509
Default display J8 (HDMI)*** J8 (HDMI)*** J8 (HDMI)***
SD card boot slot J507 (SD3) J507 (SD3) J507 (SD3)

SD card boot DIP cfg

eMMC boot DIP cfg

Feature MCIMX6SX-SDB MCIMX7SABRE

BSP name Sabre_iMX6SX_1GB Sabre_iMX7D_1GB
Debug UART* J16 J11
Default display J12 (LVDS) J9 (HDMI)
SD card boot slot J4 (SD4) J6 (SD1)

SD card boot DIP cfg
eMMC boot DIP cfg N/A N/A

Feature MCIMX6UL-EVK MCIMX6ULL-EVK

BSP name EVK_iMX6UL_512MB EVK_iMX6ULL_512MB
Debug UART* J1901 J1901
Default display J901 (LCDIF) J901 (LCDIF)
SD card boot slot J301** J301**

NXP Semiconductors 15

CHAPTER 6. BASIC BOARD SETUP

Feature MCIMX6UL-EVK MCIMX6ULL-EVK

SD card boot DIP cfg
eMMC boot DIP cfg N/A N/A

Feature MCIMX8M-EVK 8MMINILPD4-EVK 8MNANOD4-EVK

BSP name NXPEVK_IMX8M_4GB NXPEVK_IMX8M_Mini_2GB EVK_IMX8MN_2GB
Debug UART* J1701 J901 J901
Default display J1001 (HDMI) J801 (MIPI DSI) J801 (MIPI DSI)
SD card boot slot J1601** J701** J701**

SD card boot DIP cfg
eMMC boot DIP cfg N/A N/A N/A

Legend Meaning

* Serial port configuration: 115200 baud, 8 data bits, 1 stop bit, no parity.
** MicroSD card slot
*** Updated UEFI image needed to have LVDS as default display output. Please set TRUE

for “PcdLvdsEnable” in *.dsc file. Section [PcdsFeatureFlag.common].

NXP Semiconductors 16

7 Booting WinPE and Flashing eMMC

This chapter describes the process of booting Windows from eMMC. To boot a device from eMMC, you
first need to flash a Windows image to eMMC. Since eMMC is soldered to the board, the only way to
write to it is to boot some kind of manufacturing OS on the device, then write the image from this
manufacturingOS. ThemanufacturingOS is booted froma removable storage such as USB or SD. In this
document, we will walk through the process of booting Windows from eMMC on an HummingBoard as
an example of an ARM32 board. We will also list commands for an MCIMX8M-EVK board to show an
example of an ARM64 board. The tools and techniques can be adapted to other hardware designs.

For the manufacturing OS, we will use Windows PE (WinPE), which stands for Windows Preinstallation
Environment. Windows PE is a small Windows image that can boot without persistent storage, and
contains tools to help install Windows such as diskpart and dism.

The high-level process we will follow is:

1. Specify the location of the bootloader.
2. Prepare an FFU to be flashed to eMMC.
3. Prepare a WinPE image, which will flash the FFU to eMMC.

7.1 Identifying boot loader location

First, specify the location of the bootloader. i.MX6/7/8 can boot from a number of sources including
eMMC/SD, NOR flash, SPI, I2C, andUSB. Formore information about i.MX6/7/8 early boot, see Firmware
Boot Documentation and the “System Boot” chapter of the processor referencemanual. In this chapter
we will assume the initial boot device is SD.

To avoid bricking your device, we recommend putting the first stage bootloader on media that can be
reprogrammed via external means if necessary, such as an SD card, SPI flash with external programing
circuitry, or I2C flash with external programming circuitry. By external programming circuitry, wemean
that you can write new contents to the storage device without booting the i.MX processor.

Another strategy is toplace thebootloaderoneMMCandhavea second, read-only eMMCpart containing
a recovery boot image which can be selected via hardware muxing. This way, if the primary eMMC part
becomes corrupted, you can press a button or connect a jumper and boot the device from the backup
eMMC part, which then allows you to recover the main eMMC part.

NXP Semiconductors 17

https://docs.microsoft.com/en-us/windows-hardware/manufacture/desktop/winpe-intro

CHAPTER 7. BOOTINGWINPE AND FLASHING EMMC

7.2 Preparing an FFU to be flashed to eMMC

The FFU that gets flashed to MMC does not have any special requirements. If the firmware is going to
be located on a di�erent storage device, it does not need to contain the firmware packages. Use the
same FFU that gets flashed to the SD card.

7.3 Creating and deploying the WinPE Image

Create an image that can boot from removablemedia, does not require persistent storage, and contains
dism.exe, which is the tool that writes an FFU to storage. WinPE is designed for this purpose. To create
a bootable WinPE image, we need to:

1. Inject i.MX drivers into the image.
2. Copy the WinPE image to an SD card.
3. Copy firmware to the SD card.

The script build/tools/make-winpe.cmd (or build/tools/make-winpe-i.MX8.cmd for ARM64 plat-
form) does all of the above, and can be used to set the WinPE image to flash an FFU to a storage device
at boot.

Install the following so�ware:

1. ADK for Windows 10
2. Windows PE add-on for the ADK
3. dd for windows, which must be placed on your PATH or in the current directory

First, create a WinPE image on our machine. In this example, we specify the /ffu option because we
want to deploy an FFU to eMMC. This means it is needed to build the FFU first. The build step will also
supply requires bspcabs with drivers located inside imx-iotcore\build\solution\iMXPlatform\
Build\FFU\bspcabs\<ARCHITECTURE>\<CONFIGURATION> for the WinPe. Note the script must be run
as administrator, and it is recommended to create a new directory for the execution such as winpe in
the following example because the script will create files in the execution directory.

Note in the snippet bellow it is required to use appropriate set of drivers and partitioning
scheme for the board by calling either:

• make-winpe.cmd for i.MX 6 boards
• make-winpe-i.MX6-Qx.cmd for i.MX 6Qx boards
• make-winpe-i.MX8.cmd for i.MX 8 boards
• make-winpe-i.MX8-MN.cmd for i.MX 8M Nano board

NXP Semiconductors 18

https://docs.microsoft.com/en-us/windows-hardware/manufacture/desktop/download-winpe--windows-pe
https://docs.microsoft.com/en-us/windows-hardware/manufacture/desktop/download-winpe--windows-pe
http://www.chrysocome.net/dd

CHAPTER 7. BOOTINGWINPE AND FLASHING EMMC

1 mkdir winpe
2 cd winpe
3 :: For ARM platform run:
4 make-winpe.cmd /builddir ..\imx-iotcore\build\solution\iMXPlatform\Build\FFU\bspcabs\ARM\Debug\ /

firmware path\to\firmware_fit.merged /uefi path\to\uefi.fit /ffu path\to\bsp.ffu
5

6 :: For ARM64 platform run either make-winpe-i.MX8.cmd or make-winpe-i.MX8-MN.cmd:
7 make-winpe-i.MX8.cmd /builddir ..\imx-iotcore\build\solution\iMXPlatform\Build\FFU\bspcabs\ARM64\

Debug\ /firmware path\to\flash.bin /uefi /uefi path\to\uefi.fit /ffu path\to\bsp.ffu

If /ffu switch command is omitted the board will boot just into WinPE.

Then, apply the image to an SD card. Insert an SD card into your machine, then determine the physical
disk number by running:

1 diskpart
2 > list disk
3 > exit

The output will look something like this:

1 DISKPART> list disk
2

3 Disk ### Status Size Free Dyn Gpt
4 -------- ------------- ------- ------- --- ---
5 Disk 0 Online 931 GB 0 B *
6 Disk 1 Online 931 GB 0 B
7 Disk 2 Online 953 GB 0 B *
8 Disk 3 No Media 0 B 0 B
9 Disk 4 No Media 0 B 0 B
10 Disk 5 No Media 0 B 0 B
11 Disk 6 No Media 0 B 0 B
12 * Disk 7 Online 14 GB 0 B

In this example, the physical disk number is 7.

Apply the WinPE image to the SD card:

1 :: For ARM platform run:
2 make-winpe.cmd /apply 7
3 :: For ARM64 platform run:
4 make-winpe-i.MX8.cmd /apply 7

It will format the SD card, copy the WinPE image contents, and write the firmware to the reserved
sector at the beginning of the card.

NOTE: Some card readers couldn’t be used along for the partitioning, causing Diskpart to
raise errors about wrong alignment parameter settings. In case this happens it is recom-
mended to try a di�erent card reader eg. Transcend TS-RDF8K USB reader.

You can now insert the SD card into your board and boot. It will boot into WinPE, then flash the FFU
to eMMC, then reboot. Before rebooting, it renames the EFI folder at the root of the SD card to _efi,

NXP Semiconductors 19

CHAPTER 7. BOOTINGWINPE AND FLASHING EMMC

which causes UEFI to skip the SD card when it’s looking for a filesystem to boot from. It will find the
EFI directory on eMMC instead, and boot from there. If you wish to boot into WinPE again, you can
rename _efi back to EFI.

Note: The script is likely to fail on i.MX 8M devices if the eMMC has been already formated.
This could cause WinPe to assign eMMC a drive letter and change disk numbering. The
problem can be solved running make-winpe.cmd with /ffudisk 1 and /winpedrive C

options which modifies the script run inside WinPe.

If you wish to boot directly from eMMC configure the board switched accordingly and restart the board.

In case youdecide to boot fromSDcard for development purposes it is recommended towipe the eMMC
using the clean all command of diskpart a�er booting into WinPe console environment created with-
out /ffu parameter. When chosing disk by sel disk N typing details diskmight provide additional
information about currently selected device. Cleaning the eMMC is recomended because deploying
the FFU with same partitioning scheme on both SD card and eMMC can confuse both bootloader and
operating system. This might lead to cases when bootloader unexpetedly continues to boot from the
eMMC or the operating system tomount system partition fromwrong device.

NXP Semiconductors 20

8 Windows 10 IoT Boot Sequence on i.MX Platform
This chapter describes the boot sequence on i.MX6 from power-on to the first Windows component
(bootmgr). Several components are involved: on-chip ROM code, U-Boot SPL, U-Boot proper, OP-TEE,
and UEFI.

1. The on-chip ROM code

1. Loads SPL into OCRAM.
2. If High Assurance Boot is enabled boot ROM halts if SPL signature is invalid.
3. Jumps into SPL.

2. SPL

1. Captures and hides the secret device identity when High Assurance Boot is enabled.
2. Verifies Flat Image Tree containing U-Boot proper and OP-TEE.
3. Loads OP-TEE and U-Boot proper.
4. Jumps into OP-TEE.

3. OP-TEE

1. OP-TEE runtime initialization.
2. Switches to normal world then jumps into U-Boot proper.

4. U-Boot proper loads UEFI then jumps to UEFI.
5. UEFI loads and starts bootmgr.

SPL and U-Boot are not retained in memory a�er boot, while parts of OP-TEE and UEFI remain in
memory while the OS runs. The OS calls into OP-TEE and UEFI at runtime to perform certain functions,
such as real-time clock operations and processor power management.

8.1 On-chip ROM code

Execution begins in on-chip ROM code which is burned into the chip. The ROM code reads its configura-
tion from on-chip fuses. Fuses control options such as boot source, JTAG settings, high-assurance boot
(HAB), and TrustZone configuration. Boot source is the media fromwhich the next boot stage will be
loaded. This can be EIM, SATA, serial ROM, SD/eSD, MMC/eMMC, or NAND flash. Only SD and eMMC
are supported by the reference firmware, and the rest of this chapter describes the boot flow from
SD/eMMC. The on-chip ROM code reads the boot binary from the boot source into memory, performs
high-assurance boot verification, and jumps to it.

The on-chip ROM code

NXP Semiconductors 21

CHAPTER 8. WINDOWS 10 IOT BOOT SEQUENCE ON I.MX PLATFORM

1. Reads fuses to determine boot source
2. Reads fuses to determine HAB state
3. Loads boot header fromMMC sector 2 to OCRAM
4. Parses boot header and loads rest of boot binary (SPL) into OCRAM

• Load address defined by CONFIG_SPL_TEXT_BASE in include/configs/imx6_spl.h

5. Parses CSF and does HAB verification
6. Runs DCD commands from boot header
7. Jumps to SPL entry point

Memory layout just before jump to SPL:

1 DRAM not yet initialized
2

3 SRAM
4 +---------------------------+ 0x00940000 (end of SRAM)
5 | reserved by boot ROM |
6 +---------------------------+ 0x00938000
7 | |
8 | |
9 | |
10 | |
11 | SPL |
12 +---------------------------+ 0x00908000 (CONFIG_SPL_TEXT_BASE)
13 | |
14 +---------------------------+ 0x00907000
15 | reserved by boot ROM |
16 +---------------------------+ 0x00900000 (start of SRAM)

8.2 SPL

SPL is a binary produced by the U-Boot build whose purpose is to prepare the system for execution of
full U-Boot (U-Boot proper) from DRAM. SPL is the first piece of code that can be changed, as opposed
to on-chip ROM code which is burned into the chip and cannot be changed. SPL builds from the same
sources as full U-Boot, but is designed to be as small as possible to fit in OCRAM. The included U-Boot
has modifications to load OP-TEE.

The reference implementation of SPL

1. Begins execution at arch/arm/cpu/armv7/start.S : reset

2. Does low-level CPU init

1. Errata
2. CP15 and system control registers

NXP Semiconductors 22

CHAPTER 8. WINDOWS 10 IOT BOOT SEQUENCE ON I.MX PLATFORM

3. Initializes DDR
4. Initializes critical hardware

1. Pin muxing
2. Clocks
3. Timer
4. Console UART

5. Enables L1 cache

1. Sets up page tables above stack. There must be 16k of available memory above the stack to
hold the page tables.

2. Stack top defined as CONFIG_SPL_STACK in include/configs/imx6_spl.h

6. Initializes CAAM security hardware

1. Initializes RNG capabilities of the CAAM

7. Attempts to read and hide a unique secret device identity from the SoC.

1. This will only succeed if the system has been fused for High Assurance Boot

8. Loads U-Boot proper and OP-TEE binaries using a Flattened Image Tree (FIT)

1. Loads the FIT header fromMMC sector CONFIG_SYS_MMCSD_RAW_MODE_U_BOOT_SECTOR. The
default for ARCH_MX6 is defined in common/spl/Kconfig, but a defconfig can override the
value.

• A FIT is a single binary which both stores the U-Boot and OP-TEE images, and encodes
their load addresses and entry points

• The FIT source file (image_source.its) describes the structure of the FIT to the U-Boot
mkimage tool which is responsible for assembling the image. The load and entry
addresses for U-Boot (CONFIG_SYS_TEXT_BASE) and OP-TEE (CFG_TEE_LOAD_ADDR) are
updated automatically when the firmware is built

1. Verifies that the signature of the configuration block in the FIT matches the public key
baked in SPL’s Device Tree Blob (DTB) at image creation time.

2. Verifies that the hashes for U-Boot and OP-TEEmatch the values stored in the signed
FIT configuration.

3. Loads U-Boot and OP-TEE to memory based on o�sets stored in the FIT
4. Identifies that the OP-TEE image is bootable using the FIT, disables caches and inter-
rupts, then jumps into OP-TEE.

Memory layout just before jump to OP-TEE:

NXP Semiconductors 23

CHAPTER 8. WINDOWS 10 IOT BOOT SEQUENCE ON I.MX PLATFORM

1 DRAM
2 +---------------------------+
3 | |
4 | |
5 +---------------------------+
6 | |
7 | U-Boot proper |
8 +---------------------------+ 0x17800000 (CONFIG_SYS_TEXT_BASE)
9 | |
10 | |
11 +---------------------------+
12 | |
13 | OP-TEE |
14 +---------------------------+ 0x10A00000 (CFG_TEE_LOAD_ADDR)
15 | |
16 | |
17 +---------------------------+ 0x10000000 (start of DRAM)
18

19 SRAM
20 +---------------------------+ 0x00940000
21 | heap (grows down) | 0x0093C000 (CONFIG_SPL_STACK)
22 | |
23 | stack (grows down) |
24 | |
25 | |
26 | bss |
27 | data |
28 | text |
29 | SPL |
30 | |
31 +---------------------------+ 0x00908000 (CONFIG_SPL_TEXT_BASE)
32 | |
33 | |
34 | page tables (16k) |
35 +---------------------------+ 0x00900000

8.3 OP-TEE

OP-TEE is a trusted operating system that runs in ARM TrustZone. It implements a trusted execution
environment that can host trusted applications, and it implements the ARM Power State Coordination
Interface (PSCI).

The reference implementation of OP-TEE

1. Begins execution at core/arch/arm/kernel/generic_entry_a32.S : _start

1. OP-TEE’s load address is CFG_TEE_LOAD_ADDR defined in optee_os/core/arch/arm/

plat-imx/platform_config.h

2. Does low-level CPU initialization

NXP Semiconductors 24

CHAPTER 8. WINDOWS 10 IOT BOOT SEQUENCE ON I.MX PLATFORM

1. Disallows unaligned access
2. Configures non-secure world (NS) access to CPU features

3. Configures and enables SCU
4. Configures i.MX6 CSU
5. Enables debug console UART
6. Enables MMU and L1 cache
7. Sets up secure monitor code
8. Initializes GIC
9. Initializes TEE core
10. Initializes drivers and services
11. Jumps to non-secure world at the address passed in LR at entry, which should be the U-Boot

proper entry point in DRAM

Memory layout just before jump to U-Boot proper:

1 DRAM
2 +---------------------------+
3 | |
4 | |
5 +---------------------------+
6 | |
7 | U-Boot proper |
8 +---------------------------+ 0x17800000 (CONFIG_SYS_TEXT_BASE)
9 | |
10 | |
11 | |
12 +---------------------------+ 0x12A00000 (CFG_DDR_TEETZ_RESERVED_SIZE +
13 | | CFG_DDR_TEETZ_RESERVED_START)
14 | OP-TEE shared memory |
15 +---------------------------+ 0x12800000 (CFG_SHMEM_START)
16 | |
17 | |
18 | |
19 | OP-TEE private secure |
20 | memory |
21 +---------------------------+ 0x10A00000 (CFG_TEE_LOAD_ADDR)
22 | |
23 | |
24 +---------------------------+ 0x10000000
25

26 SRAM
27 +---------------------------+ 0x00940000
28 | |
29 | |
30 | |
31 | |
32 | |
33 | |
34 | |
35 +---------------------------+ 0x00900000

NXP Semiconductors 25

CHAPTER 8. WINDOWS 10 IOT BOOT SEQUENCE ON I.MX PLATFORM

8.4 U-Boot Proper

U-Boot proper is the full U-Boot binary with scripting support, file system support, command support,
and hardware support. U-Boot proper executes in normal world and initializes hardware, then loads
UEFI and jumps to UEFI.

The reference implementation of U-Boot proper

1. Begins execution at arch/arm/cpu/armv7/start.S : reset

1. Load address is CONFIG_SYS_TEXT_BASE defined in configs/mx6sabresd_nt_defconfig

2. Does low-level CPU initialization
3. Executes arch/arm/lib/crt0.S : _main

4. Executes common/board_f.c : board_init_f

1. Hardware initialization
2. Muxing
3. Clocks
4. Console UART

5. Relocates to top of DRAM
6. Enables L1 cache
7. Does hardware initialization (USB, ENET, PCI, SPI, I2C, PMIC, Thermal, etc.)
8. Runs the boot command. The boot command is a script defined by CONFIG_BOOTCOMMANDwhich
is defined in configs/mx6sabresd_nt_defconfig. This script

1. Initializes a global page.
2. Loads uefi.fit from a specified MMC device / FAT partition to a specified address in DRAM.
3. Calls bootm on uefi.fit in memory, which will load UEFI to its BaseAddress.
4. Bootm then disables caches and interrupts and jumps to UEFI’s entry point, which is spec-
ified as load and entry in imx-iotcore/build/firmware/<board-name>/uefi.its. This
addressmustmatch the values definedby BaseAddress in imx-edk2-platforms/Silicon/
NXP/iMX6Pkg/iMX6CommonFdf.inc

Memory map just before jumping to UEFI:

1 DRAM
2 +---------------------------+
3 | |
4 | relocated U-Boot and |
5 | stack, heap |
6 +---------------------------+
7 | |
8 | |

NXP Semiconductors 26

CHAPTER 8. WINDOWS 10 IOT BOOT SEQUENCE ON I.MX PLATFORM

9 | |
10 +---------------------------+
11 | |
12 | U-Boot proper |
13 +---------------------------+ 0x17800000 (CONFIG_SYS_TEXT_BASE)
14 | |
15 | |
16 | |
17 +---------------------------+ 0x12A00000 (CFG_DDR_TEETZ_RESERVED_SIZE +
18 | | CFG_DDR_TEETZ_RESERVED_START)
19 | OP-TEE shared memory |
20 +---------------------------+ 0x12800000 (CFG_SHMEM_START)
21 | |
22 | |
23 | |
24 | OP-TEE private secure |
25 | memory |
26 +---------------------------+ 0x10A00000 (CFG_TEE_LOAD_ADDR)
27 | |
28 | UEFI |
29 +---------------------------+ 0x10820000 (BaseAddress, load/entry in uefi.its)
30 | |
31 | |
32 +---------------------------+ 0x10000000
33

34 SRAM
35 +---------------------------+ 0x00940000
36 | |
37 | |
38 | |
39 | |
40 | |
41 | |
42 | |
43 +---------------------------+ 0x00900000

8.5 UEFI

UEFI prepares for Windows and starts the Windows boot manager. The Windows boot manager (boot-
mgr) and bootloader (winload) are written as UEFI applications, and must run within the UEFI environ-
ment.

The reference implementation of UEFI

1. Begins execution at ArmPlatformPkg/PrePi/Arm/ModuleEntryPoint.S : _ModuleEntryPoint

1. Load address is BaseAddress defined in each platform’s fdf file such as edk2-platforms/
Platform/NXP/Sabre_iMX6Q_1GB/Sabre_iMX6Q_1GB.fdf

2. Does hardware initialization

NXP Semiconductors 27

CHAPTER 8. WINDOWS 10 IOT BOOT SEQUENCE ON I.MX PLATFORM

3. Unless CONFIG_NOT_SECURE_UEFI=1 is set, the authenticated variable store Trusted Applica-
tion (TA) is loaded by imx-edk2-platforms/Platform/Microsoft/OpteeClientPkg/Drivers/
AuthVarsDxe.c. This TA is responsible for storing non-volatile variables in eMMC RPMB.

4. The Authvar TA may also contain Secure Boot keys. If the keys are present, UEFI will enable
Secure Boot and verify the signatures on all subsequent components as they are loaded.

5. UnlessCONFIG_NOT_SECURE_UEFI=1 is set a firmwareTPMTA isalso loadedbyimx-edk2-platforms/
Platform/Microsoft/OpteeClientPkg/Library/Tpm2DeviceLibOptee/Tpm2DeviceLibOptee.c.
The TPM also uses RPMB for non-volatile secure storage. UEFI measures each subsequent
component as it is loaded and saves these values in Platform Configuration Registers (PCRs)
in the TPM. Windows will use these measurements to verify the system is secure and unlock
BitLocker encrypted drives.

6. Sets up structures for hand o� to Windows
7. Loads and runs bootmgr

Bootmgr then orchestrates the process of loading Windows.

Memory map just before jumping to bootmgr:

1 DRAM
2 +---------------------------+
3 | |
4 | UEFI stack |
5 +---------------------------+
6 | |
7 | |
8 +---------------------------+ 0x12A00000 (CFG_DDR_TEETZ_RESERVED_SIZE +
9 | | CFG_DDR_TEETZ_RESERVED_START)
10 | OP-TEE shared memory |
11 +---------------------------+ 0x12800000 (CFG_SHMEM_START)
12 | |
13 | |
14 | |
15 | OP-TEE private secure |
16 | memory |
17 +---------------------------+ 0x10A00000 (CFG_TEE_LOAD_ADDR)
18 | |
19 | UEFI |
20 +---------------------------+ 0x10820000 (BaseAddress, uefi_addr)
21 | Global data |
22 +---------------------------+ 0x10817000 (PcdGlobalDataBaseAddress)
23 | TPM2 control area |
24 +---------------------------+ 0x10814000 (PcdTpm2AcpiBufferBase)
25 | |
26 +---------------------------+ 0x10800000
27 | Frame Buffer |
28 +---------------------------+ 0x10000000 (PcdFrameBufferBase)
29

30 SRAM
31 +---------------------------+ 0x00940000
32 | |

NXP Semiconductors 28

CHAPTER 8. WINDOWS 10 IOT BOOT SEQUENCE ON I.MX PLATFORM

33 | |
34 | |
35 | |
36 | |
37 | |
38 | |
39 +---------------------------+ 0x00900000

8.6 SD/eMMC Layout

SD/eMMC is laid out as follows:

1 +---------------------------+ Sector 0
2 | partition table |
3 | |
4 +---------------------------+ Sector 2
5 | SPL_signed.imx |
6 | IMX bootloader header |
7 | SPL binary |
8 | DTB with image.fit key |
9 | CSF data (for HAB) |
10 | |
11 +---------------------------+
12 | |
13 | |
14 +---------------------------+ Sector 136 (CONFIG_SYS_MMCSD_RAW_MODE_U_BOOT_SECTOR)
15 | image.fit |
16 | OPTEE |
17 | U-Boot Proper |
18 | DTB with uefi.fit key|
19 +---------------------------+
20 | |
21 | |
22 +---------------------------+
23 .
24 .
25 .
26 +---------------------------+ Partition 2 (FAT)
27 | uefi.fit |
28 | |
29 +---------------------------+

NXP Semiconductors 29

9 Securing Peripherals on i.MX using OP-TEE

This chapter describes the process of configuring an i.MX peripheral for secure access using OP-TEE
only. It also describes the Windows behavior toward i.MX peripherals.

Note: In the text to follow, we assume you are familiar with the required build tools, general boot flow,
and process to build ARM32 firmware or build ARM64 firmware.

9.1 OP-TEE

Locking down specific peripherals for secure access occurs during the OP-TEE portion of boot, when
OP-TEE configures the CSU.

By default, the CSU registers are initialized to allow access from both normal and secure world for all
peripherals.

To override this default configuration, add an override entry to the access_control global array. You
can find this array in optee_os/core/arch/arm/plat-imx/imx6.c

1 static struct csu_csl_access_control access_control[] = {/
2 * TZASC1 - CSL16 [7:0] *//
3 * TZASC2 - CSL16 [23:16] */
4 {16, ((CSU_TZ_SUPERVISOR << 0) | (CSU_TZ_SUPERVISOR << 16))},
5 }

The first field is the CSUCSL register index to secure the required device. The second field is the required
CSU CSL register value. This value will override the default CSU initialization value. OP-TEE provides
some useful defines to create this value:

1 /
2 *
3 * Grant R+W access:
4 * - Just to TZ Supervisor execution mode, and
5 * - Just to a single device
6 */
7 #define CSU_TZ_SUPERVISOR 0x22/
8

9 *
10 * Grant R+W access:
11 * - To all execution modes, and
12 * - To a single device
13 */
14 #define CSU_ALL_MODES 0xFF

Note: Each CSU CSL register is responsible for two peripheral devices. You must set the override value
carefully to ensure you are securing the intended peripheral device.

NXP Semiconductors 30

CHAPTER 9. SECURING PERIPHERALS ON I.MX USING OP-TEE

9.2 Windows

Any access to a secure peripheral from a non-secure environment will cause system failure. To avoid
this scenario, we have added code into the PEP driver to automatically read the CSU registers and
determine if a Windows-enabled peripheral can be interacted with from a non-secure environment. If
it can’t, Windows will automatically hide the secured peripheral to avoid the potential system failure.

NXP Semiconductors 31

10 Building Windows 10 IoT Core for NXP i.MX
Processors

10.1 Building the BSP

Before you start building the BSP, you need to have an archive with latest BSP sources from NXP sites
downloaded and extracted. A�er that, you should get the following directory structure:

1 $ tree -L 1
2 .
3 |- imx-iotcore
4 |- LA_OPT_NXP_Software_License.htm
5 |- SCR_imx-iotcore.txt
6 |- SCR-imx-vpu.txt
7 |- W<os_version>_imx-iotcore-<build_date>.zip

10.1.1 Required Tools

The following tools are required to build the driver packages and IoT Core FFU: Visual Studio 2017,
Windows Kits (ADK/SDK/WDK), and the IoT Core OS Packages.

10.1.1.1 Visual Studio 2017

• Make sure that you install Visual Studio 2017 before the WDK so that the WDK can install a
required plugin.

• Download Visual Studio 2017.
• During install select Desktop development with C++.
• During install select the following in the Individual components tab. If these options are not
available try updating VS2017 to the latest release:

– VC++ 2017 version 15.9 v14.16 Libs for Spectre (ARM)
– VC++ 2017 version 15.9 v14.16 Libs for Spectre (ARM64)
– VC++ 2017 version 15.9 v14.16 Libs for Spectre (X86 and x64)
– Visual C++ compilers and libraries for ARM
– Visual C++ compilers and libraries for ARM64

NXP Semiconductors 32

https://docs.microsoft.com/en-us/windows-hardware/drivers/other-wdk-downloads#step-1-install-visual-studio

CHAPTER 10. BUILDINGWINDOWS 10 IOT CORE FOR NXP I.MX PROCESSORS

10.1.1.2 Windows Kits fromWindows 10, version 1809

• IMPORTANT: Make sure that any previous versions of the ADK and WDK have been unin-
stalled!

• Install ADK 1809
• Install WDK 1809

– Scroll down and select Windows 10, version 1809.

– Make sure that you allow the Visual Studio Extension to install a�er the WDK install com-
pletes.

• If the WDK installer says it could not find the correct SDK version, install SDK 1809

– Scroll down and select Windows 10 SDK, version 1809 (10.0.17763.0).

• A�er installing all Windows Kits, restart computer and check if you have correct versions installed
in Control panel.

10.1.1.3 IoT Core OS Packages

• Visit the Windows IoT Core Downloads page and download “Windows 10 IoT Core Packages –
Windows 10 IoT Core, version 1809 (LTSC)”.

• Open the iso Windows10_IoTCore_Packages_ARM32_en-us_17763_253.msi
• Install Windows_10_IoT_Core_ARM_Packages
• Install Windows_10_IoT_Core_ARM64_Packages for ARM64 builds.

10.1.2 One-Time Environment Setup

Test certificates must be installed to generate driver packages on a development machine.

1. Open an Administrator Command Prompt.
2. Navigate to your BSP and into the folder imx-iotcore\build\tools.
3. Launch StartBuildEnv.bat.
4. Run SetupCertificate.bat to install the test certificates.

Some tools may not work correctly if LongPath is not enabled, therefore run following command in
console:

1. Execute reg add HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\FileSystem /

v LongPathsEnabled /t REG_DWORD /d 1 command.

NXP Semiconductors 33

https://developer.microsoft.com/en-us/windows/hardware/windows-assessment-deployment-kit
https://docs.microsoft.com/en-us/windows-hardware/drivers/other-wdk-downloads
https://developer.microsoft.com/en-us/windows/downloads/sdk-archive/
https://www.microsoft.com/en-us/software-download/windows10IoTCore#!

CHAPTER 10. BUILDINGWINDOWS 10 IOT CORE FOR NXP I.MX PROCESSORS

The USN journal registry size has to be set to 1 Mb on your development PC to avoid errors1 during FFU
creation process by the following:

1. Execute reg add HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\FileSystem /

v NtfsAllowUsnMinSize1Mb /t REG_DWORD /d 1 command.
2. Restart PC.

Make sure you are running Visual Studio 2017 as Administrator when compiling BSP or assembling the
test FFU.

10.1.3 Creating test FFU

The iMXPlatform Visual Studio solution contains project capable of generating the test FFU for the i.Mx
platform. Generated FFU aims to be used to try out theWindows 10 IoT Core on supported development
boards. OEMmanufacturers should follow the Building the FFU with the IoT ADK AddonKit chapter
instead.

10.1.3.1 Start generating the FFU

1. Launch Visual Studio 2017 as Administrator.
2. Open the solution imx-iotcore\build\solution\iMXPlatform\iMXPlatform.sln located in the path
where you have extracted BSP archive.

3. Change the build type from Debug to Release. Change the build flavor from ARM to ARM64 if
building for iMX8.

4. If secure boot feature is enabled it is required to use OEM signed drivers with exception of HAL
that has to be signed by Microso�. For this reason HAL is distributed signed in binary form
alongwith the BSP sources inside imx-iotcore\components\NXP.SignedDrivers directory. For
details on deployment of prebuilt HAL see How to use the signed prebuilt HAL drivers with the
BSP section.

5. To build press Ctrl-Shi�-B or choose Build -> Build Solution from menu. This will compile all
driver packages then generate the FFU. (Depending on the speed of the build machine FFU
generation may take around 10-20 minutes.)

6. A�er a successful build the new FFU will be located in imx-iotcore\build\solution\

iMXPlatform\Build\FFU\Sabre_iMX6Q_1GB\ for ARM builds and imx-iotcore\build\

solution\iMXPlatform\Build\FFU\NXPEVK_iMX8M_4GB for ARM64 builds.

1The USN journal error message: Error: CreateUsnJournal: Unable to create USN journal, as

one already exists on volume

NXP Semiconductors 34

CHAPTER 10. BUILDINGWINDOWS 10 IOT CORE FOR NXP I.MX PROCESSORS

7. The FFU contains firmware components for the NXP IMX8M EVK with i.MX8M Quad Core SOM
depending on build flavor. This firmware is automatically applied to the SD Card during the FFU
imaging process.

10.1.3.2 Building the FFU for other boards

In order to build an FFU for another board you’ll need to modify GenerateFFU.bat in the Build Scripts
folder of the Solution Explorer. Comment out the default Sabre_iMX6Q_1GB or NXPEVK_iMX8M_4GB
builds with REM and uncomment any other boards you want to build.

1 REM cd /d %BATCH_HOME%
2 REM echo "Building EVK_iMX6ULL_512MB FFU"
3 REM call BuildImage EVK_iMX6ULL_512MB EVK_iMX6ULL_512MB_TestOEMInput.xml
4

5 cd /d %BATCH_HOME%
6 echo "Building Sabre_iMX6Q_1GB FFU"
7 call BuildImage Sabre_iMX6Q_1GB Sabre_iMX6Q_1GB_TestOEMInput.xml

10.1.4 Building the FFUwith the IoT ADK AddonKit

1. Launch Visual Studio 2017 as Administrator.
2. Open the solution imx-iotcore\build\solution\iMXPlatform\iMXPlatform.sln located in the path
where you have extracted BSP archive.

3. Change the build type from Debug to Release. Change the build flavor from ARM to ARM64 if
building for iMX8.

4. If secure boot feature is enabled it is required to use OEM signed drivers with exception of HAL
that has to be signed by Microso�. For this reason HAL is distributed signed in binary form
alongwith the BSP sources inside imx-iotcore\components\NXP.SignedDrivers directory. For
details on deployment of prebuilt HAL see How to use the signed prebuilt HAL drivers with the
BSP section.

5. Build the GenerateBSP project to create a BSP folder in the root of the repository.
6. Clone the IoT ADK AddonKit and switch to a working commit. The repository is under active
development andmight contain errors.

7. Follow the Create a basic image instructions from the IoT Core Manufacturing guide with the
following changes.

• When importing a BSP use one of the board names from the newly generated BSP folder in
the imx-iotcore repository. Import-IoTBSP Sabre_iMX6Q_1GB <Path to imx-iotcore\

BSP>

• When creating a product use the same board name from the BSP import. Add-IoTProduct
ProductA Sabre_iMX6Q_1GB

NXP Semiconductors 35

https://github.com/ms-iot/iot-adk-addonkit
https://docs.microsoft.com/en-us/windows-hardware/manufacture/iot/create-a-basic-image

CHAPTER 10. BUILDINGWINDOWS 10 IOT CORE FOR NXP I.MX PROCESSORS

10.1.5 How to use the signed prebuilt HAL drivers with the BSP

The Secure Boot feature of Windows 10 IoT Core requires use of signed drivers. The signing is to be
done by OEM with exception of the HAL that should be signed by Microso� certification authority.
HAL is therefore provided signed and prebuild with the BSP sources inside imx-iotcore\components\
NXP.SignedDrivers\BootDrivers.<ARCHITECTURE> directory. To use these prebuild signed drivers
in BSP project there are two options available:

a) In case the BSP created by Visual Studio is imported by Iot-AddonKit it is possible to replace
the imported dll and sys files by hand. However this requires to do the replacement a�er each
reimport of the BSP.

b) The other option is to modify the iMXPlatform.sln so the prebuilt driver binaries get copied
instead of being built. This ensures the signed drivers will get into BSP directory that could
be imported by Iot-AddonKit as well as into the testing FFU. The modification can be done by
following the steps bellow:

1. Open the iMXPlatform.sln solution in Visual Studio 2017 (run as Administrator).

2. Remove the drivers being replaced from the solution.

1. Right-click HAL Extensions -> choose Remove.
2. Expand Drivers -> right-click -> choose Remove.

3. Add New solution folder (eg ‘NXP prebuilt drivers’) by right-clicking the Solution iMXPlatform.sln
-> add -> choose New solution folder.

4. Add the projects with prebuilt signed drivers to the newly added solution folder. An example
resulting Solution Explorer view is shown below the list of steps.

List of projects:

• imx-iotcore\components\NXP.SignedDrivers\VsProjects\HalExtiMX7Timers\

HalExtiMX7Timers.vcxproj

• imx-iotcore\components\NXP.SignedDrivers\VsProjects\HalExtiMXDma\HalExtiMXDma.vcxproj

• imx-iotcore\components\NXP.SignedDrivers\VsProjects\imxgpio\imxgpio.vcxproj

• imx-iotcore\components\NXP.SignedDrivers\VsProjects\mx6pep\mx6pep.vcxproj

• imx-iotcore\components\NXP.SignedDrivers\VsProjects\imxusdhc\imxusdhc.vcxproj

• imx-iotcore\components\NXP.SignedDrivers\VsProjects\HalExtiMX6Timers\

HalExtiMX6Timers.vcxproj

5. Add the newly added projects as dependencies of GenerateBSP and GenerateTestFFU (right-click
the Solution iMXPlatform.sln -> choose Properties -> Project Dependencies).

NXP Semiconductors 36

CHAPTER 10. BUILDINGWINDOWS 10 IOT CORE FOR NXP I.MX PROCESSORS

6. Rebuild the added projects to make sure all changes to the solution take place (right-click ->
choose Rebuild).

7. Now the a�er making sure these drivers can be deployed you can continue with the Creating
test FFU chapter or the Building the FFU with the IoT ADK AddonKit chapter to create FFU to be
deployed on your SD card.

Figure 10.1: Solution explorer with NXP prebuilt drivers projects

NXP Semiconductors 37

11 Building and Updating ARM32 Firmware

This chapter describes how to set up a build environment to build the latest ARM32 firmware, update
the firmware on the SD Card for testing and development, and include the new firmware in the FFU
builds.

11.1 Setting up your build environment

1. Set up a Linux environment such as:

• Dedicated Linux system

• Linux Virtual Machine

• Windows Subsystem for Linux (WSL setup instructions)

Note: We validate with both Ubuntu in WSL and standalone Ubuntu machines.

2. Update and install build tools

1 $ sudo apt-get update
2 $ sudo apt-get upgrade
3 $ sudo apt-get install build-essential python python-dev python-crypto python-wand

device-tree-compiler bison flex swig iasl uuid-dev wget git bc libssl-dev python3-setuptools
python3 python3-pyelftools

4 $ pushd ~
5 $ wget https://releases.linaro.org/components/toolchain/binaries/6.4-2017.11/arm-linux-gnueabihf/

gcc-linaro-6.4.1-2017.11-x86_64_arm-linux-gnueabihf.tar.xz
6 $ tar xf gcc-linaro-6.4.1-2017.11-x86_64_arm-linux-gnueabihf.tar.xz
7 $ rm gcc-linaro-6.4.1-2017.11-x86_64_arm-linux-gnueabihf.tar.xz
8 $ popd

3. Ensure that case sensitivity is turned on for the u-boot directory when building in WSL.

! This is not enough, move the repository from /mnt/c to your home directory of WSL or we have
to check if case sensitivity for OP tee fixes the problem.

1 setfattr -n system.wsl_case_sensitive -v 1 u-boot

4. Download the BSP archives from NXP web site and extract it. The following commands can be
used to extract archives.

1 # Note: The contents will be extracted into current directory by default
2 unzip W*_imx-iotcore*.zip # -d <output-directory-path>
3 tar -xf W*_imx-firmware*.tgz # -C <output-directory-path>

5. At this point your directory structure looks like the following:

NXP Semiconductors 38

https://docs.microsoft.com/en-us/windows/wsl/install-win10

CHAPTER 11. BUILDING AND UPDATING ARM32 FIRMWARE

1 $ tree -L 1
2 .
3 |- cst
4 |- edk2
5 |- external
6 |- firmware-imx-8.1
7 |- imx-atf
8 |- imx-edk2-platforms
9 |- imx-iotcore
10 |- imx-mkimage
11 |- LA_OPT_NXP_Software_License.htm
12 |- MSRSec
13 |- mu_platform_nxp
14 |- optee_os
15 |- RIoT
16 |- SCR_imx-firmware.txt
17 |- SCR_imx-iotcore.txt
18 |- SCR-imx-vpu.txt
19 |- u-boots
20 |- W<os_version>_imx-firmware-<build_date>.tgz
21 |- W<os_version>_imx-iotcore-<build_date>.zip

11.2 Building the firmware

1. Build firmware to test the setup. Adding “-j 20” to make will parallelize the build and speed it up
significantly on WSL, but since the firmwares build in parallel it will be more di�icult to diagnose
any build failures. You can customize the number to work best with your system.

1 $ cd imx-iotcore/build/firmware/<board-name>
2 $ make

2. A�er a successful build you should have several output files:

1 firmware_fit.merged - Contains SPL, OP-TEE, and U-Boot proper
2 uefi.fit - Contains the UEFI firmware

11.3 Adding updated firmware to your ARM FFU

1. To make the updated firmware a part of your FFU build, youmust copy the firmwares to your
board’s Package folder in imx-iotcore.

• Copy uefi.fit into /board/<board-name>/Package/BootFirmware

• Copy firmware_fit.merged into /board/<board-name>/Package/BootLoader

• Youcanalsouse the followingmakecommandtocopyuefi.fitandfirmware_fit.merged
to the correct package directories.

NXP Semiconductors 39

CHAPTER 11. BUILDING AND UPDATING ARM32 FIRMWARE

1 $ make update-ffu

2. If you decided to store the sources and firmwares inside git repository when preparing to commit
your changes, you should use the followingmake command to save your OP-TEE SDK and the
commit versions of your firmware automatically in your board folder.

1 $ make commit-firmware

11.4 Deploying firmware to an SD cardmanually

11.4.1 Bootable Firmware without installing an FFU

If you want to rapidly deploy and test firmware configurations without needing the full Windows boot,
you can prepare an SD card manually to boot only the firmware stages.

The SD card must have two partitions in the following order:

• 4MB partition at the start of the disk, no file system. This is where U-Boot and OP-TEE get
deployed.

• 50MB partition formatted fat32, optionally labeled efi. This is where UEFI gets deployed.

Here are the steps to run in an administrator CMD to prepare an SD card in Windows:

1 powershell Get-WmiObject Win32_DiskDrive
2 REM Find the SD card in that list and use the number after PhysicalDrive as your disk number.
3 diskpart
4 list disk
5 sel disk <#>
6 list part
7 REM Check the partitions to make sure this disk is actually your SD card.
8 clean
9 create partition primary size=4
10 create partition primary size=50
11 format quick fs=fat32 label=EFI
12 assign
13 list vol
14 exit

11.4.2 Deploying U-Boot and OP-TEE (firmware_fit.merged) for development

On Windows you can use DD for Windows from an administrator command prompt to deploy
firmware_fit.merged. Be careful that you use the correct of and seek, DD will not ask for confirmation.

1 powershell Get-WmiObject Win32_DiskDrive
2 dd if=firmware_fit.merged of=\\.\PhysicalDrive<X> bs=512 seek=2

NXP Semiconductors 40

http://www.chrysocome.net/dd

CHAPTER 11. BUILDING AND UPDATING ARM32 FIRMWARE

• Where PhysicalDrive<X> is the DeviceID of your SD card as shown by Get-WmiObject.

You might get the output: Error reading file: 87 The parameter is incorrect. This error can
be ignored as it refers to non-aligned writes on block devices. DD for Windows will align and retry.

If you are working on a dedicated Linux machine (not WSL or VM) use:

1 dd if=firmware_fit.merged of=/dev/sdX bs=512 seek=2

11.4.3 Deploying UEFI (uefi.fit) for development

Copy uefi.fit over to the EFI partition on your SD card.

11.4.4 Updating the TAs in UEFI

A firmware TPM TA, and UEFI authenticated variable TA, are included with EDK2. Generally, these TAs
should work on any ARM32 systemwhere OP-TEE is running, and eMMC RPMB is available.

These binaries are built using OpenSSL by default, but they can also be built using WolfSSL (See
FTPM_FLAGS and AUTHVARS_FLAGS in common.mk).

They are omitted from the firmware if the CONFIG_NOT_SECURE_UEFI=1 flag is set. This is useful for
early development work if RPMB storage is not functioning yet, or if eMMC is not present on the device.

They can be rebuilt using:

1 make update_tas

This updates the binaries included in the imx-edk2-platforms repository.

11.4.4.1 Clearing RPMB

If the TAs are changed significantly, or the storage becomes corrupted, it may be necessary
to clear the OP-TEE secure file system in RPMB. This can be done by building OP-TEE with the
CFG_RPMB_RESET_FAT=y flag set. This flag will cause OP-TEE to erase its FAT metadata when it first
accesses RPMB during every boot. This e�ectively clears all the data stored by the TAs. A�er clearing
the RPMB OP-TEE should be switched back to CFG_RPMB_RESET_FAT=n to allow variables to persist
again.

NXP Semiconductors 41

12 Building and Updating ARM64 Firmware

This chapter describes the process of setting up a build-environment to build the latest firmware,
update the firmware on the SD Card for testing and development, and include the new firmware in the
FFU builds.

Note: The UEFI build environment has changed for 1903 and any existing build environment must be
updated.

12.1 Setting up your build environment

1. Set up a Linux environment such as:

• Dedicated Linux system

• Linux Virtual Machine

• Windows Subsystem for Linux (WSL setup instructions)

Note: We validate with both Ubuntu in WSL and standalone Ubuntu machines.

2. Update and install build tools.

1 sudo apt-get update
2 sudo apt-get upgrade
3 sudo apt-get install attr build-essential python python-dev python-crypto python-wand

device-tree-compiler bison flex swig iasl uuid-dev wget git bc libssl-dev zlib1g-dev python3-pip
4 *** new for 1903 UEFI
5 sudo apt-get install gcc g++ make python3 mono-devel
6 ***
7 pushd ~
8 wget https://releases.linaro.org/components/toolchain/binaries/7.2-2017.11/aarch64-linux-gnu/

gcc-linaro-7.2.1-2017.11-x86_64_aarch64-linux-gnu.tar.xz
9 tar xf gcc-linaro-7.2.1-2017.11-x86_64_aarch64-linux-gnu.tar.xz
10 rm gcc-linaro-7.2.1-2017.11-x86_64_aarch64-linux-gnu.tar.xz
11 popd

3. Ensure that case sensitivity is turned on when building in Windows. The recommended
setfattr -n system.wsl_case_sensitive -v 1 <directory> turned out to raise errors and
do not fix OP-Tee compilation problems thus it is recommended to copy the BSP into virtual
disk of WSL. BSP could be put into home directory of the WSL account (cp -r <win10-bsp> ~/

<win10-bsp>) and build there.

4. Download the BSP archives from NXP web site and extract it. The following commands can be
used to extract archives.

NXP Semiconductors 42

https://docs.microsoft.com/en-us/windows/wsl/install-win10

CHAPTER 12. BUILDING AND UPDATING ARM64 FIRMWARE

1 # Note: The contents will be extracted into current directory by default
2 unzip W*_imx-iotcore*.zip # -d <output directory path>
3 tar -xf W*_imx-firmware*.tgz # -C <output directory path>

5. At this point your directory structure looks like the following.

1 $ tree -L 1
2 .
3 |- cst
4 |- edk2
5 |- external
6 |- firmware-imx-8.1
7 |- imx-atf
8 |- imx-edk2-platforms
9 |- imx-iotcore
10 |- imx-mkimage
11 |- LA_OPT_NXP_Software_License.htm
12 |- MSRSec
13 |- mu_platform_nxp
14 |- optee_os
15 |- RIoT
16 |- SCR_imx-firmware.txt
17 |- SCR_imx-iotcore.txt
18 |- SCR-imx-vpu.txt
19 |- u-boots
20 |- W<os_version>_imx-firmware-<build_date>.tgz
21 |- W<os_version>_imx-iotcore-<build_date>.zip

12.2 Building the firmware

1. Build firmware to test the setup can be done by executing the following code manually or by
running thebuildme64.sh -b <BOARD_NAME> -t all [-clean] scriptprovidedwith the source
files.

Note: Adding “-j 20” to make will parallelize the build and speed it up significantly on
WSL, but since the firmwares build in parallel it will be more di�icult to diagnose any
build failures. You can customize the number to work best with your system.

1 # U-Boot
2 export CROSS_COMPILE=~/gcc-linaro-7.2.1-2017.11-x86_64_aarch64-linux-gnu/bin/aarch64-linux-gnu-
3 export ARCH=arm64
4

5 pushd u-boots/u-boot-imx_arm64
6

7 make imx8mq_evk_nt_defconfig
8 ---or---
9 make imx8mm_evk_nt_defconfig
10 ---or---
11 make imx8mn_ddr4_evk_nt_defconfig
12

NXP Semiconductors 43

CHAPTER 12. BUILDING AND UPDATING ARM64 FIRMWARE

13 make
14 popd
15

16

17 # Arm Trusted Firmware
18

19 export CROSS_COMPILE=~/gcc-linaro-7.2.1-2017.11-x86_64_aarch64-linux-gnu/bin/aarch64-linux-gnu-
20 export ARCH=arm64
21

22 pushd imx-atf
23 make PLAT=imx8mq SPD=opteed bl31
24 ---or---
25 make PLAT=imx8mm SPD=opteed bl31
26 ---or---
27 make PLAT=imx8mn SPD=opteed bl31
28 popd
29

30 # OP-TEE OS
31

32 export -n CROSS_COMPILE
33 export -n ARCH
34 export CROSS_COMPILE64=~/gcc-linaro-7.2.1-2017.11-x86_64_aarch64-linux-gnu/bin/aarch64-linux-gnu-
35 pushd optee_os/optee_os_arm64
36

37 make PLATFORM=imx PLATFORM_FLAVOR=mx8mqevk \
38 CFG_TEE_CORE_DEBUG=n CFG_TEE_CORE_LOG_LEVEL=2 \
39 CFG_RPMB_FS=y CFG_RPMB_TESTKEY=y CFG_RPMB_WRITE_KEY=y CFG_REE_FS=n \
40 CFG_IMXCRYPT=y CFG_CORE_HEAP_SIZE=131072
41 ---or---
42 make PLATFORM=imx PLATFORM_FLAVOR=mx8mmevk \
43 CFG_TEE_CORE_DEBUG=n CFG_TEE_CORE_LOG_LEVEL=2 \
44 CFG_RPMB_FS=y CFG_RPMB_TESTKEY=y CFG_RPMB_WRITE_KEY=y CFG_REE_FS=n \
45 CFG_IMXCRYPT=y CFG_CORE_HEAP_SIZE=131072
46 ---or---
47 make PLATFORM=imx PLATFORM_FLAVOR=mx8mnevk \
48 CFG_TEE_CORE_DEBUG=n CFG_TEE_CORE_LOG_LEVEL=2 \
49 CFG_RPMB_FS=y CFG_RPMB_TESTKEY=y CFG_RPMB_WRITE_KEY=y CFG_REE_FS=n \
50 CFG_IMXCRYPT=y CFG_CORE_HEAP_SIZE=131072
51

52 # debug
53 # make PLATFORM=imx PLATFORM_FLAVOR=mx8mqevk \
54 # CFG_TEE_CORE_DEBUG=y CFG_TEE_CORE_LOG_LEVEL=3 \
55 # CFG_RPMB_FS=y CFG_RPMB_TESTKEY=y CFG_RPMB_WRITE_KEY=y CFG_REE_FS=n \
56 # CFG_TA_DEBUG=y CFG_TEE_CORE_TA_TRACE=1 CFG_TEE_TA_LOG_LEVEL=2 \
57 # CFG_IMXCRYPT=y CFG_CORE_HEAP_SIZE=131072
58 # ---or---
59 # make PLATFORM=imx PLATFORM_FLAVOR=mx8mmevk \
60 # CFG_TEE_CORE_DEBUG=y CFG_TEE_CORE_LOG_LEVEL=3 \
61 # CFG_RPMB_FS=y CFG_RPMB_TESTKEY=y CFG_RPMB_WRITE_KEY=y CFG_REE_FS=n \
62 # CFG_TA_DEBUG=y CFG_TEE_CORE_TA_TRACE=1 CFG_TEE_TA_LOG_LEVEL=2 \
63 # CFG_IMXCRYPT=y CFG_CORE_HEAP_SIZE=131072
64 # ---or---
65 # make PLATFORM=imx PLATFORM_FLAVOR=mx8mnevk \
66 # CFG_TEE_CORE_DEBUG=y CFG_TEE_CORE_LOG_LEVEL=3 \
67 # CFG_RPMB_FS=y CFG_RPMB_TESTKEY=y CFG_RPMB_WRITE_KEY=y CFG_REE_FS=n \
68 # CFG_TA_DEBUG=y CFG_TEE_CORE_TA_TRACE=1 CFG_TEE_TA_LOG_LEVEL=2 \

NXP Semiconductors 44

CHAPTER 12. BUILDING AND UPDATING ARM64 FIRMWARE

69 # CFG_IMXCRYPT=y CFG_CORE_HEAP_SIZE=131072
70

71 ${CROSS_COMPILE64}objcopy -O binary ./out/arm-plat-imx/core/tee.elf ./out/arm-plat-imx/tee.bin
72 popd
73

74 # OP-TEE Trusted Applications
75 # Step can be skipped as apps are already prebuilt.
76

77 export TA_DEV_KIT_DIR=../../../../optee_os/out/arm-plat-imx/export-ta_arm64
78 export TA_CROSS_COMPILE=~/gcc-linaro-7.2.1-2017.11-x86_64_aarch64-linux-gnu/bin/aarch64-linux-gnu-
79 export TA_CPU=cortex-a53
80

81 pushd MSRSec/TAs/optee_ta
82 make CFG_ARM64_ta_arm64=y CFG_FTPM_USE_WOLF=y CFG_AUTHVARS_USE_WOLF=y
83 popd
84

85 cp MSRSec/TAs/optee_ta/out/AuthVars/2d57c0f7-bddf-48ea-832f-d84a1a219301.ta mu_platform_nxp/
Microsoft/OpteeClientPkg/Bin/AuthvarsTa/Arm64/Test/

86 cp MSRSec/TAs/optee_ta/out/AuthVars/2d57c0f7-bddf-48ea-832f-d84a1a219301.elf mu_platform_nxp/
Microsoft/OpteeClientPkg/Bin/AuthvarsTa/Arm64/Test/

87 cp MSRSec/TAs/optee_ta/out/fTPM/bc50d971-d4c9-42c4-82cb-343fb7f37896.ta mu_platform_nxp/Microsoft/
OpteeClientPkg/Bin/fTpmTa/Arm64/Test/

88 cp MSRSec/TAs/optee_ta/out/fTPM/bc50d971-d4c9-42c4-82cb-343fb7f37896.elf mu_platform_nxp/Microsoft/
OpteeClientPkg/Bin/fTpmTa/Arm64/Test/

89

90 export -n TA_DEV_KIT_DIR
91 export -n TA_CPU
92

93 # imx-mkimage
94

95 export CROSS_COMPILE=~/gcc-linaro-7.2.1-2017.11-x86_64_aarch64-linux-gnu/bin/aarch64-linux-gnu-
96 export ARCH=arm64
97

98 pushd imx-mkimage/iMX8M
99

100 cp ../../firmware-imx-8.1/firmware/ddr/synopsys/lpddr4_pmu_train_*.bin .
101 cp ../../firmware-imx-8.1/firmware/hdmi/cadence/signed_hdmi_imx8m.bin .
102 cp ../../optee_os/optee_os_arm64/out/arm-plat-imx/tee.bin .
103

104 cp ../../imx-atf/build/imx8mq/release/bl31.bin .
105 ---or---
106 cp ../../imx-atf/build/imx8mm/release/bl31.bin .
107 ---or---
108 cp ../../imx-atf/build/imx8mn/release/bl31.bin .
109

110 cp ../../u-boots/u-boot-imx_arm64/u-boot-nodtb.bin .
111 cp ../../u-boots/u-boot-imx_arm64/spl/u-boot-spl.bin .
112

113 cp ../../u-boots/u-boot-imx_arm64/arch/arm/dts/fsl-imx8mq-evk.dtb .
114 ---or---
115 cp ../../u-boots/u-boot-imx_arm64/arch/arm/dts/fsl-imx8mm-evk.dtb .
116 ---or---
117 cp ../../u-boots/u-boot-imx_arm64/arch/arm/dts/fsl-imx8mn-ddr4-evk.dtb .
118

119 cp ../../u-boots/u-boot-imx_arm64/tools/mkimage .
120

NXP Semiconductors 45

CHAPTER 12. BUILDING AND UPDATING ARM64 FIRMWARE

121 mv mkimage mkimage_uboot
122

123 cd ..
124

125 make SOC=iMX8M flash_hdmi_spl_uboot
126 ---or---
127 make SOC=iMX8MM flash_hdmi_spl_uboot
128 ---or---
129 make SOC=iMX8MN flash_ddr4_evk
130

131 popd
132

133 # UEFI
134 # note: On Windows Ubuntu, ignore Python errors during build specifically like
135 # "ERROR - Please upgrade Python! Current version is 3.6.7. Recommended minimum is 3.7."
136

137 # setup
138 pushd mu_platform_nxp
139 export GCC5_AARCH64_PREFIX=~/gcc-linaro-7.2.1-2017.11-x86_64_aarch64-linux-gnu/bin/

aarch64-linux-gnu-
140 pip3 install -r requirements.txt --upgrade
141

142 # The following step - P̀latformBuild.py --setup̀ is not supported in current release and can be
omitted. If it is required to run this command please setup git repository structure for it
first either by obtaining the MSRSec repository directly from Microsoft Github or by
initialization of your own git repository.

143 python3 NXP/MCIMX8M_EVK_4GB/PlatformBuild.py --setup
144 # if error here about NugetDependency.global_cache_path, then make sure mono-devel package is

installed
145 # using apt-get as listed in "Update and install build tools" above.
146

147 cd MU_BASECORE
148 make -C BaseTools
149 cd ..
150

151 popd
152

153 # clean
154 pushd mu_platform_nxp
155 rm -r Build
156 rm -r Config
157 popd
158

159 # build
160 pushd mu_platform_nxp
161

162

163 export GCC5_AARCH64_PREFIX=~/gcc-linaro-7.2.1-2017.11-x86_64_aarch64-linux-gnu/bin/
aarch64-linux-gnu-

164

165 python3 NXP/MCIMX8M_EVK_4GB/PlatformBuild.py -V TARGET=RELEASE \
166 PROFILE=DEV MAX_CONCURRENT_THREAD_NUMBER=20
167 ---or---
168 python3 NXP/MCIMX8M_MINI_EVK_2GB/PlatformBuild.py -V TARGET=RELEASE \
169 PROFILE=DEV MAX_CONCURRENT_THREAD_NUMBER=20
170 ---or---

NXP Semiconductors 46

CHAPTER 12. BUILDING AND UPDATING ARM64 FIRMWARE

171 python3 NXP/EVK_iMX8MN_2GB/PlatformBuild.py -V TARGET=RELEASE \
172 PROFILE=DEV MAX_CONCURRENT_THREAD_NUMBER=20
173

174 # debug
175 # python3 NXP/MCIMX8M_EVK_4GB/PlatformBuild.py -V TARGET=DEBUG \
176 # PROFILE=DEV MAX_CONCURRENT_THREAD_NUMBER=20
177 # ---or---
178 # python3 NXP/MCIMX8M_MINI_EVK_2GB/PlatformBuild.py -V TARGET=DEBUG \
179 # PROFILE=DEV MAX_CONCURRENT_THREAD_NUMBER=20
180

181 cd Build/MCIMX8M_EVK_4GB/RELEASE_GCC5/FV
182 ---or---
183 cd Build/MCIMX8M_MINI_EVK_2GB/RELEASE_GCC5/FV
184 ---or---
185 cd Build/EVK_iMX8MN_2GB/RELEASE_GCC5/FV
186

187 cp ../../../../../imx-iotcore/build/firmware/its/uefi_imx8_unsigned.its .
188 ../../../../../u-boots/u-boot-imx_arm64/tools/mkimage -f uefi_imx8_unsigned.its -r uefi.fit
189

190 popd

2. A�er a successful build you should have several output files:

1 imx-mkimage/iMX8M/flash.bin - Contains SPL, ATF, OP-TEE, and U-Boot proper
2

3 mu_platform_nxp/Build/MCIMX8M_EVK_4GB/RELEASE_GCC5/FV/uefi.fit - Contains the UEFI firmware
4 ---or---
5 mu_platform_nxp/Build/MCIMX8M_MINI_EVK_2GB/RELEASE_GCC5/FV/uefi.fit - Contains the UEFI firmware
6 ---or---
7 mu_platform_nxp/Build/EVK_iMX8MN_2GB/RELEASE_GCC5/FV/uefi.fit - Contains the UEFI firmware

12.3 Adding updated firmware to your ARM64 FFU

1. To make the updated firmware a part of your FFU build, youmust copy the firmwares to your
board’s Package folder in imx-iotcore.

• Copy uefi.fit into /board/<boardname>/Package/BootFirmware
• Copy flash.bin into /board/<boardname>/Package/BootLoader

1 cp imx-mkimage/iMX8M/flash.bin imx-iotcore/build/board/NXPEVK_iMX8M_4GB/Package/BootLoader/
flash.bin

2 cp mu_platform_nxp/Build/MCIMX8M_EVK_4GB/RELEASE_GCC5/FV/uefi.fit imx-iotcore/build/board/
NXPEVK_iMX8M_4GB/Package/BootFirmware/uefi.fit

3 ---or---
4 cp imx-mkimage/iMX8M/flash.bin imx-iotcore/build/board/NXPEVK_iMX8M_Mini_2GB/Package/BootLoader/

flash.bin
5 cp mu_platform_nxp/Build/MCIMX8M_MINI_EVK_2GB/RELEASE_GCC5/FV/uefi.fit imx-iotcore/build/board/

NXPEVK_iMX8M_Mini_2GB/Package/BootFirmware/uefi.fit
6 ---or---
7 cp imx-mkimage/iMX8M/flash.bin imx-iotcore/build/board/EVK_iMX8MN_2GB/Package/BootLoader/flash.bin

NXP Semiconductors 47

CHAPTER 12. BUILDING AND UPDATING ARM64 FIRMWARE

8 cp mu_platform_nxp/Build/EVK_iMX8MN_2GB/RELEASE_GCC5/FV/uefi.fit imx-iotcore/build/board/
EVK_iMX8MN_2GB/Package/BootFirmware/uefi.fit

12.4 Deploying firmware to an SD cardmanually

12.4.1 Deploying U-Boot, ATF, OP-TEE (flash.bin) and UEFI (uefi.fit) for development

OnWindows you can use DD for Windows from an administrator command prompt to deploy flash.bin
and uefi.fit. Be careful that you use the correct of and seek, DD will not ask for confirmation.

If you are working on a Windowsmachine use:

1 powershell Get-WmiObject Win32_DiskDrive
2

3 # For MCIMX8M_EVK_4GB and MCIMX8M_MINI_EVK_2GB boards use seek=66
4 dd if=flash.bin of=\\.\PhysicalDrive<X> bs=512 seek=66
5 ---or---
6 # For EVK_iMX8MN_2GB board use seek=64
7 dd if=flash.bin of=\\.\PhysicalDrive<X> bs=512 seek=64
8

9 dd if=uefi.fit of=\\.\PhysicalDrive<X> bs=1024 seek=2176

• Where PhysicalDrive<X> is the DeviceID of your SD card as shown by Get-WmiObject.
• Youmight get the output: Error reading file: 87 The parameter is incorrect. This error
can be ignored.

If you are working on a dedicated Linux machine (not WSL or VM) use:

1 # For MCIMX8M_EVK_4GB and MCIMX8M_MINI_EVK_2GB boards use seek=66
2 dd if=flash.bin of=/dev/sdX bs=512 seek=66
3 ---or---
4 # For EVK_iMX8MN_2GB board use seek=64
5 dd if=flash.bin of=/dev/sdX bs=512 seek=64
6

7 dd if=uefi.fit of=/dev/sdX bs=1024 seek=2176

NXP Semiconductors 48

http://www.chrysocome.net/dd

13 Adding New Boards and Drivers to the BSP

13.1 Adding a New Board

This chapter describes the process of setting up a new board configuration for FFU image builds.

13.1.1 Initialize a new board configuration

1. Open PowerShell and run imx-iotcore\build\tools\NewiMX6Board.ps1 <NewBoardName>.

• Note: <NewBoardName>must follow the schema of BoardName_SoCType_MemoryCapacity.
See imx-iotcore\build\board for examples.

• The following instructions assume an example board namedMyBoard_iMX6Q_1GB.
• If the script is blocked by execution policy, invoke a powershell from an administrator
command prompt to bypass the powershell script execution policy: powershell.exe
-executionpolicy bypass .\NewiMX6Board.ps1 <NewBoardName>

2. This step will create a new board configuration in imx-iotcore\build\board\ and a new
firmware folder in imx-iotcore\build\firmware.

13.1.2 Setup the solution in Visual Studio

1. Open up the Solution Explorer view (Ctrl + Alt + L).

2. Right-click the Board Packages folder and select Add Existing Project.

3. Select imx-iotcore\build\board\MyBoard_iMX6Q_1GB\Package\MyBoardPackage.vcxproj.

4. Right-click your => Build Dependencies => Project Dependencies then selectHalExtiMX6Timers,
imxusdhc, andmx6pep.

• For an i.MX7 project selectHalExtiMX7Timers and imxusdhc.

5. Right-click the GenerateTestFFU project => Build Dependencies => Project Dependencies then
select your from the list.

6. Right-click GenerateBSP project => Properties => NMake => Build Command Line => EDIT and add
call ..\..\..\tools\BuildBSP.bat MyBoard_iMX6Q_1GB.

7. Right-click GenerateBSP project => Properties => NMake => Rebuild All Command Line => EDIT
and add call ..\..\..\tools\BuildBSP.bat MyBoard_iMX6Q_1GB.

NXP Semiconductors 49

CHAPTER 13. ADDING NEW BOARDS AND DRIVERS TO THE BSP

13.1.3 Update the firmware for your board

1. Port the firmware to your board following the i.MX Porting Guide.

2. Modify imx-iotcore\build\firmware\ContosoBoard_iMX6Q_2GB\Makefilewith the appropri-
ate values for all CONFIG options. This is used by the makefile to configure each firmware build.

1 # Select the defconfig file to use in U-Boot
2 UBOOT_CONFIG=mx6sabresd_nt_defconfig
3

4 # Select the DSC file name to use in EDK2
5 EDK2_DSC=Sabre_iMX6Q_1GB
6 # Select the subdirectory of the Platform folder for this board
7 EDK2_PLATFORM=NXP/Sabre_iMX6Q_1GB
8 # Select DEBUG or RELEASE build of EDK2
9 EDK2_DEBUG_RELEASE=RELEASE
10

11 # Select the FIT Image Tree Source file used to bundle and sign U-Boot and OP-TEE
12 UBOOT_OPTEE_ITS=uboot_optee_unsigned.its
13 # Select the FIT Image Tree Source file used to bundle and sign UEFI
14 UEFI_ITS=uefi_unsigned.its
15

16 all: firmware_fit.merged firmwareversions.log
17

18 include ../Common.mk
19

20 .PHONY: $(OPTEE)
21 # Select the PLATFORM for OP-TEE to build
22 $(OPTEE):
23 $(MAKE) -C $(OPTEE_ROOT) O=$(OPTEE_OUT) PLATFORM=imx-mx6qsabresd \
24 $(OPTEE_FLAGS_IMX6)

3. This new firmware folder and updatedmakefilewill allow you to use the common firmwaremake-
file to build your firmwares. Themakefile can be invoked from imx-iotcore\build\firmware.
This can be run directly fromWSL, on a Linux host, or in CMD by prepending make with “wsl”

WSL and Linux:

1 cd imx-iotcore/build/firmware
2 make MyBoard_iMX6Q_1GB

CMD and PowerShell:

1 cd imx-iotcore\build\firmware
2 wsl make MyBoard_iMX6Q_1GB

13.1.4 Build the FFU in Visual Studio

1. Edit GenerateFFU.bat in Build Scripts and comment out the board build target using REM. This
will speed up FFU generation time since it will only build the FFU for your board.

NXP Semiconductors 50

CHAPTER 13. ADDING NEW BOARDS AND DRIVERS TO THE BSP

2. Select the Release or Debug build target, then right click and build GenerateTestFFU.
3. A�er FFU generation completes, your FFU will be available in imx-iotcore\build\solution\

iMXPlatform\Build\FFU\MyBoard_iMX6Q_1GB and can be flashed to an SD card following the
instructions in the IoT Core Manufacturing Guide.

13.1.5 Board Package Project Meanings

The board package projects are used to build the following packages:

• Platform Firmware: BootFirmware, BootLoader
• Platform Identity: SystemInformation
• File system Layout: DeviceLayoutProd, OEMDevicePlatform
• UpdateOS Drivers: SVPlatExtensions

The board packages have a dependency on HalExtiMX6Timers, mx6pep, and imxusdhc because those
are the minimum set of boot critical drivers for i.MX6, so the UpdateOS Drivers package SVPlatExten-
sions requires them.

13.2 Adding a New Driver

This chapter describes the process of adding a new driver to FFU image builds.

13.2.1 Adding a New Driver to the Solution

1. Right-click the Drivers folder in Solution Explorer and add a New Project.

2. Select Windows Drivers then Kernel Mode Driver or User Mode Driver. Set the name of your driver
and set the location to imx-iotcore\driver. The rest of the instructions assume the name
MyTestDriver. A�er the project has been created, select it in Solution Explorer and save your
changes with Ctrl+S.

3. Copy the reference TestDriver.wm.xml from imx-iotcore\build\tools\TestDriver.wm.xml

into your project directory and rename it a�er your project. The rest of the instructions assume
the name MyTestDriver.wm.xml.

4. Edit MyTestDriver.wm.xml to set the name, namespace, owner, legacyName, and INF source.
The legacyName field determines the name of your driver cab package.

NXP Semiconductors 51

https://docs.microsoft.com/en-us/windows-hardware/manufacture/iot/create-a-basic-image#span-idflashanimagespanflash-the-image-to-a-memory-card

CHAPTER 13. ADDING NEW BOARDS AND DRIVERS TO THE BSP

5. Open MyTestDriver.vcxproj in a text editor and add the following XML as the first entry under
the <Project> tag at the top of the file. Change the wm.xml names to match your new one, then
save and close the file.

1 <Import Project="$(SolutionDir)..\..\common.props"/>
2 <ItemGroup>
3 <PkgGen Include="MyTestDriver.wm.xml">
4 <AdditionalOptions>/universalbsp</AdditionalOptions>
5 </PkgGen>
6 </ItemGroup>

6. Navigate back to Visual Studio and select Reload Solution if it prompts.

7. Modify your driver’s inf to store driver in the Driver Store. Change the DIRID number in De-
faultDestDir and ServiceBinary from 12 to 13. This will cause your driver binary to be stored in
C:\Windows\System32\DriverStore instead of C:\Windows\System32\Drivers.

1 [DestinationDirs]
2 DefaultDestDir = 13
3 ...
4

5 ServiceBinary = %13%\MyTestDriver.sys

8. Right-click the GenerateTestFFU project, select Project Dependencies, then check the box next
to your new project.

13.2.2 Adding a Driver to the FFU

1. A�er adding your driver to the project and building it, confirm that your driver has built and
placed its binaries and .cab file inside of imx-iotcore\build\solution\iMXPlatform\Build\
Release\ARM.

2. Open the Device Feature Manifest of your board (for example, imx-iotcore\build\board\
Sabre_iMX6DL_1GB\InputFMs\Sabre_iMX6DL_1GB_DeviceFM.xml).

3. AddanewPackageFile section to theXMLandmodify itwith thepackagenamesetby legacyName
in your wm.xml. Change FeatureID to match the other drivers in your board file, or create a new
FeatureID for your feature.

1 <PackageFile Path="%BSPPKG_DIR%" Name="MyOEM.MyNamespace.MyTestDriver.cab">
2 <FeatureIDs>
3 <FeatureID>MYNEWFEATURE_DRIVERS</FeatureID>
4 </FeatureIDs>
5 </PackageFile>

4. If you did not create a new FeatureID, skip this step. If you created a new FeatureID in your
DeviceFM.xml then youmust select it in your ProductionOEMInput.xml and TestOEMInput.xml

NXP Semiconductors 52

CHAPTER 13. ADDING NEW BOARDS AND DRIVERS TO THE BSP

files to include the driver in the respective image (for example imx-iotcore\build\board\

Sabre_iMX6DL_1GB\Sabre_iMX6DL_1GB_TestOEMInput.xml and imx-iotcore\build\board\

Sabre_iMX6DL_1GB\Sabre_iMX6DL_1GB_ProductionOEMInput.xml).

1 <OEM>
2 <Feature>MYNEWFEATURE_DRIVERS</Feature>
3 <Feature>IMX_DRIVERS</Feature>
4 </OEM>

5. Clean the solution then rebuild the GenerateTestFFU project and your driver will be included in
the FFU.

NXP Semiconductors 53

14 i.MX Porting Guide
This chapter describes the process of initializingWindows on new i.MX6 and i.MX7 boards. The firmware
and drivers can be ported to new boards by changing settings that di�er from board to board. These
settings include:

• SoC type (i.MX6 Quad/QuadPlus/Dual/DualLite/Solo/SoloX, i.MX7 Dual)
• MMDC initialization
• DDR size
• Console UART selection
• Boot device selection
• Pin muxing
• Exposed devices
• O�-SoC peripherals

The general procedure is to bring up each of the firmware components in sequence, then create
packages, and finally create an FFU configuration. By the end, a newboard configurationwill be located
in the repository that will build an FFU for your board. It is important to create new configurations for
your board instead of modifying existing ones, so that you can easily integrate code changes from our
repositories. We encourage you to submit your changes by using a pull request to our repositories so
that we canmake code changes without breaking your build.

This guide is structured in two parts:

1. Create Windows Compatible U-Boot and OPTEE configurations for your own board.
2. Add your board to the firmware build system.
3. Resolve compilation errors to build your firmwares into a firmware_fit.merged.
4. Iterate on builds of SPL, U-BOOT, OP-TEE, UEFI until Windows boots with minimum support.
5. Bring up devices one at a time.

Note: Before starting, read the boot flow document to get an idea of the boot process.

In the following sections, replace yourboardwith a concise name of your board.

14.1 U-Boot

The first step is to bring up U-Boot SPL. We use U-Boot in a specific way to implement certain security
features, so even if a U-Boot configuration already exists for your board, you will need to create a new
configuration for booting Windows. The operation of SPL is described here. Your boardmust follow
the same general flow, with only board-specific changes.

NXP Semiconductors 54

CHAPTER 14. I.MX PORTING GUIDE

1. Copy configs/mx6sabresd_nt_defconfig to configs/yourboard_nt_defconfig (For iMX7
start with mx7sabresd_nt_defconfig)

2. Edit configs/yourboard_nt_defconfig
3. Change CONFIG_TARGET_MX6SABRESD=y to CONFIG_TARGET_YOURBOARD=y. If your board is not
already supported by U-Boot, you will need to add it to U-Boot. We walk through this process
below.

4. Change MX6QDL in the line CONFIG_SYS_EXTRA_OPTIONS="IMX_CONFIG=arch/arm/mach-imx/

spl_sd.cfg,MX6QDL" to the appropriate value for your board. Possible values are listed in
arch/arm/mach-imx/mx6/Kconfig and arch/arm/mach-imx/mx7/Kconfig.

If your board is already supportedbyU-Boot, you’ll still need tomake sure that the correct configuration
options are set.

14.1.1 U-Boot Configuration Options

Here are some important configuration options for booting Windows.

• CONFIG_BAUDRATE=115200 - Sets the UART baud rate to 115200.
• CONFIG_BOOTCOMMAND="globalpage init 0x10817000; globalpage add ethaddr; fatload

mmc 0:2 0x80A20000 /uefi.fit; bootm 0x80A20000" - This is the command that automat-
ically runs on startup. It will store the MAC address into the global page for UEFI, then load
uefi.fit frommmc and boot the fit to start UEFI. The globalpage commands should be omitted if
CONFIG_CMD_GLOBAL_PAGE has not been selected.

• CONFIG_DISTRO_DEFAULTS=y - Enables default boot scripting which is used by CON-
FIG_BOOTCOMMAND.

• CONFIG_BOOTDELAY=-2 - Disables the delay before U-Boot runs the bootcommand. The value -2
means that it will not check the serial port for interrupts unlike a delay of 0. This is important
because WinDBG continuously sends characters through the UART which will U-Boot to stop in
the console if it checks.

• CONFIG_FIT=y - Allow booting of Flattened Image Trees (FIT) which store both binaries and their
metadata.

• CONFIG_OF_LIBFDT=y - Adds to U-Boot the library responsible for working with Flattened Device
Trees (FDT), of which FITs are a subset.

• CONFIG_IMX_PERSIST_INIT=y - Prevents U-Boot proper from disabling the display and PCIe
when booting into UEFI.

• CONFIG_CMD_FAT=y - Enables FAT file system commands and is used by the boot script to load
UEFI.

• CONFIG_CMD_MMC=y - Enables MMC commands and is used by the boot script to load UEFI.
• CONFIG_CMD_PART=y - Enables part command which is used by UEFI boot script.

NXP Semiconductors 55

CHAPTER 14. I.MX PORTING GUIDE

• CONFIG_HUSH_PARSER=y - Necessary to enable script parsing.
• CONFIG_SECURE_BOOT=y - Enables the i.MX6 crypto driver.
• CONFIG_DEFAULT_DEVICE_TREE="devicetreename" - Selects a device tree for the platform (eg
imx6qdl-sdb). Important for the FIT build path that it exists, but the tree can be empty.

• CONFIG_SPL=y - Enables the Secondary Program Loader framework which is required to load
and run OP-TEE as soon as possible.

• CONFIG_SPL_FIT=y - Allows SPL to read FITs (U-Boot and OPTEE binaries).
• CONFIG_SPL_FIT_SIGNATURE_STRICT=y - Halt if loadables or firmware don’t pass FIT signature
verification.

• CONFIG_SPL_LOAD_FIT=y - SPL will attempt to load a FIT to memory.
• CONFIG_SPL_OF_LIBFDT=y - Adds to SPL the library responsible forworkingwith FlattenedDevice
Trees (FDT), of which FITs are a subset.

• CONFIG_SPL_LEGACY_IMAGE_SUPPORT=n - Prevents SPL from loading legacy images (which can-
not support future security features).

• CONFIG_SPL_BOARD_INIT=y - Enablesboardspecific implementationofvoid spl_board_init(void).
• CONFIG_SPL_CRYPTO_SUPPORT=y - Enables the crypto driver in SPL.
• CONFIG_SPL_FSL_CAAM=y - Enables the CAAM driver in SPL.
• CONFIG_SPL_HASH_SUPPORT=y - Enable hashing drivers in SPL.
• CONFIG_SPL_ENABLE_CACHES=y - Enables caches in SPL, required for the RIoT Tiny SHA256 im-
plementation.

• CONFIG_SPL_ECC=y - Enable support for Elliptic-curve cryptography in SPL using code from the
RIoT submodule.

• CONFIG_USE_TINY_SHA256=y - Select the smaller SHA256 implementation from the RIoT sub-
module instead of U-Boot’s default implementation.

• CONFIG_SPL_OF_CONTROL=y - Enable run-time configuration via Device Tree in SPL.
• CONFIG_SPL_OPTEE_BOOT=y - Instructs SPL to load and jump to OP-TEE. Required to boot Win-
dows.

• CONFIG_SPL_MMC_SUPPORT=y - Enables MMC support in SPL. Required to loadOP-TEE andU-Boot
proper.

• CONFIG_SPL_USE_ARCH_MEMCPY=n - Disables use of optimizedmemcpy routine. Saves space in
SPL.

• CONFIG_SYS_L2CACHE_OFF=y - Saves space in SPL by not including L2 initialization andmainte-
nance routines. L2 is not necessary for performance. L2 is enabled by Windows later on.

• CONFIG_USE_TINY_PRINTF=y - Saves space in SPL by selecting minimal printf implementation.

Here are somemore configuration options that aren’t boot critical for Windows.

• CONFIG_CMD_GLOBAL_PAGE=y - Enables theglobalpagecommandseen in. CONFIG_BOOTCOMMAND.
This is used to pass the MAC addresses to UEFI.

NXP Semiconductors 56

CHAPTER 14. I.MX PORTING GUIDE

• CONFIG_FIT_VERBOSE=y - Enables high verbosity when loading and parsing a Flattened Image
Tree. Helpful for debugging boot.

14.1.2 Adding a new board to U-Boot

Numerous resources to guide you through porting U-Boot to new boards are available. We recommend
that you familiarize yourself with them, as this section may not be exhaustive.

1. Edit arch/arm/mach-imx/<mx6 or mx7>/Kconfig and add a config option for your board:

1 config TARGET_YOURBOARD
2 bool "Your i.MX board"
3 select MX6QDL #(This should change to match CONFIG_SYS_EXTRA_OPTIONS from your defconfig)
4 select BOARD_LATE_INIT
5 select SUPPORT_SPL

2. Create and initialize a board directory:

1 mkdir -p board/yourcompany/yourboard
2 cp board/freescale/mx6sabresd/* board/yourcompany/yourboard/
3 mv board/yourcompany/yourboard/mx6sabresd.c board/yourcompany/yourboard/yourboard.c

3. Edit board/yourcompany/yourboard/Makefile and replace mx6cuboxi.cwith yourboard.c

4. Edit board/yourcompany/yourboard/Kconfig and set appropriate values for your board. Note
that the build system expects SYS_CONFIG_NAME to correspond to the name of a header file in
include/configs:

1 if TARGET_YOURBOARD
2

3 config SYS_BOARD
4 default "yourboard"
5

6 config SYS_VENDOR
7 default "yourcompany"
8

9 config SYS_CONFIG_NAME
10 default "yourboard"
11

12 endif

5. Create a config header for your board:

cp include/configs/mx6cuboxi.h include/configs/yourboard.h

6. Edit include/configs/yourboard.h as necessary for your board. Youmay need to add, remove,
or change options depending on what’s available on your board. Some notable settings are:

• CONFIG_MXC_UART_BASE - set this to the base address of the UART instance that should be
used for debug and console output.

NXP Semiconductors 57

CHAPTER 14. I.MX PORTING GUIDE

• CONFIG_SYS_FSL_ESDHC_ADDR - set this to the base address of the SDHC instance that U-
Boot resides on.

• CONFIG_EXTRA_ENV_SETTINGS - This should be set as follows to enable booting UEFI.
If CONFIG_UEFI_BOOT is defined, you should include config_uefi_bootcmd.h and set
CONFIG_EXTRA_ENV_SETTINGS to BOOTENV. You must replace the 0 in mmcdev=0 with the
mmc number your device boots from.

1 #ifdef CONFIG_UEFI_BOOT
2 #include <config_uefi_bootcmd.h>
3

4 #define CONFIG_EXTRA_ENV_SETTINGS \
5 "mmcdev=0\0" \
6 BOOTENV
7 #else

7. Edit board/yourcompany/yourboard/yourboard.c and add, change, and remove code as ap-
propriate for your board. Some configurations that will need to change are pin muxing, MMC
initialization, DDR size, and DRAM timing parameters.

8. Build your board. Be prepared to spend some time fixing compilation errors as you get your
board into buildable shape.

make yourboard_nt_defconfig make

Note: SPL must be less than 44k to fit into the allocated space.

14.2 OP-TEE

OP-TEE is an operating system that runs in ARM TrustZone and provides a Trusted Execution Environ-
ment (TEE). OP-TEE is required to boot Windows. OP-TEE does the following:

• Provides a trusted execution environment for trusted applications
• Switches to normal world
• Configures and enables L2 cache when requested by Windows
• Enables secondary cores when requested by Windows
• Implements shutdown and reboot
• Implements power management functionality through PSCI

OP-TEE is mostly board-independent. Right now, the only configuration that needs to be changed is
the console UART. In the future, there may be other board-specific configurations that need to change
as trusted I/O is implemented.

1. Source code of OP-TEE is stored in ‘firmware’ ZIP file optee_os/optee_os_arm/.

NXP Semiconductors 58

CHAPTER 14. I.MX PORTING GUIDE

2. Add a platform flavor for your board. Edit core/arch/arm/plat-imx/conf.mk and add your
board to the appropriate flavorlist, for example:

mx6q-flavorlist = mx6qsabresd mx6qyourboard —or— mx6dl-flavorlist = mx6dlsabresd
mx6dlyourboard —or—mx7-flavorlist = mx7dsabresd mx7yourboard

3. Edit core/arch/arm/plat-imx/platform_config.h and set CONSOLE_UART_BASE to the appro-
priate value for your platform.

4. Follow the next section to set up a firmware build folder for your system. This will se-
lect the correct flags and make OP-TEE for you. If you need more debug output, you
can customize OPTEE_FLAGS in the Common Makefile build/firmware/Common.mk set
CFG_TEE_CORE_DEBUG=y and CFG_TEE_CORE_LOG_LEVEL=4.

14.3 Setting up your build enviroment to build firmware_fit.merged

In order to build and load both OPTEE and U-Boot, create a Flattened Image Tree (FIT) binary to
flash onto your device. The build environment for FIT images is integrated into the build infrastruc-
ture. This will sign SPL for high assurance boot, and combine SPL, U-Boot, and OP-TEE into a single
firmware_fit.merged file that can be tested manually, or built into an FFU image as part of a BSP.

1. Copy imx-iotcore/build/firmware/existing-board to imx-iotcore/build/firmware/

yourboard.
2. Edit imx-iotcore/build/firmware/yourboard/Makefile and change the UBOOT_CONFIG and
the OP-TEE PLATFORM for your board.

3. Run make in imx-iotcore/build/firmware/yourboard and verify that firmware_fit.merged is
generated.

14.4 Flash firmware_fit.merged to your SD card.

• If you are using Linux, run:

1 dd if=firmware_fit.merged of=/dev/sdX bs=512 seek=2

• If you are using Windows, use dd for Windows:

1 dd if=firmware_fit.merged of=\\.\PhysicalDriveX bs=512 seek=2

NXP Semiconductors 59

http://www.chrysocome.net/dd

CHAPTER 14. I.MX PORTING GUIDE

14.4.1 Testing SPL

When you have firmware_fit.merged building, you should run SPL. If successful, SPL will initialize
DRAM, initialize MMC, load OP-TEE and U-Boot proper fromMMC, then jump to OP-TEE.

Open a serial terminal to your board at 8N1 115200. Insert the SD card into your board and boot. You
should see output similar to the following:

1 U-Boot SPL 2018.05-rc1-00004-g5a771d5 (May 25 2018 - 13:16:09 -0700)
2 Booting from SD card
3 Trying to boot from MMC1

If SPL was able to load and start OPTEE, the next few lines will be

1 I/TC:
2 I/TC: OP-TEE version: v0.4.0 #1 Fri May 25 20:22:16 UTC 2018 arm
3 I/TC: Initialized

14.4.2 Testing OP-TEE

When you have built OP-TEE successfully, run it and see that it gets as far as normal world. This will
also test SPL. SPL will not jump to OP-TEE unless it also successfully loads U-Boot proper so your FIT
image will need to contain both OP-TEE and U-Boot proper.

1 dd if=firmware_fit.merged of=/dev/sdX bs=512 seek=2
2 ---or---
3 dd if=firmware_fit.merged of=\\.\PhysicalDriveX bs=512 seek=2

Boot your device. You should see output similar to the following:

1 U-Boot SPL 2018.05-rc1-00004-g5a771d5 (May 25 2018 - 13:16:09 -0700)
2 Booting from SD card
3 Trying to boot from MMC1
4 DEBUG: [0x0] TEE-CORE:add_phys_mem:524: CFG_SHMEM_START type NSEC_SHM 0x12800000 size 0x00200000
5 DEBUG: [0x0] TEE-CORE:add_phys_mem:524: CFG_TA_RAM_START type TA_RAM 0x10c00000 size 0x01c00000
6 .
7 .
8 .
9 INFO: TEE-CORE: OP-TEE version: 2.3.0-480-gf68edcc #4 Thu Feb 1 00:41:33 UTC 2018 arm
10 DEBUG: [0x0] TEE-CORE:mobj_mapped_shm_init:592: Shared memory address range: 10b00000, 11500000
11 DEBUG: [0x0] TEE-CORE:protect_tz_memory:201: pa 0x10a00000 size 0x01e00000 needs TZC protection
12 FLOW: [0x0] TEE-CORE:protect_tz_memory:221: Unaligned pa 0x10a00000 size 0x01000000
13 FLOW: [0x0] TEE-CORE:protect_tz_memory:221: Unaligned pa 0x10a00000 size 0x00800000
14 FLOW: [0x0] TEE-CORE:protect_tz_memory:221: Unaligned pa 0x10a00000 sizE:protect_tz_memory:240:

Protecting pa 0x12000000 size 0x00800000
15 INFO: TEE-CORE: Initialized
16 DEBUG: [0x0] TEE-CORE:init_primary_helper:680: Primary CPU switching to normal world boot

Youmay also see output from U-Boot.

NXP Semiconductors 60

CHAPTER 14. I.MX PORTING GUIDE

14.4.3 Testing U-Boot

U-Boot should already be building from earlier and included in your firmware_fit.merged file. U-
Boot will run a�er OP-TEE and attempt to load UEFI. Since UEFI is not present yet, it should fail
the script and go to the U-Boot prompt. U-Boot initializes devices then executes the commands
in CONFIG_BOOTCOMMAND. If it does not attempt to load UEFI, then CONFIG_BOOTCOMMAND is probably
not set correctly. To see the actual value of CONFIG_BOOTCOMMAND, you can inspect u-boot.cfg or run
printenv at the U-Boot prompt and look at the bootcmd variable.

During initial bring up it may be helpful to disable all devices in U-Boot except UART and eMMC.

You can create a debug build of U-Boot with the following command:

1 make KCFLAGS=-DDEBUG

This is very helpful for debugging, but will cause the size of the binaries to increase. SPL may grow too
big, so you may have to use a release build of SPL and a debug build of u-boot-ivt.img. It is OK to
mix a release build of SPL with a debug build of full U-Boot.

A successful run of U-Boot should have a similar output to the following:

1 U-Boot 2018.01-00125-gfb1579e (Jan 31 2018 - 16:54:39 -0800)
2

3 CPU: Freescale i.MX6Q rev1.5 996 MHz (running at 792 MHz)
4 CPU: Extended Commercial temperature grade (-20C to 105C) at 41C
5 Reset cause: WDOG
6 Board: MX6 Board (som rev 1.5)
7 DRAM: 2 GiB
8 MMC: FSL_SDHC: 0, FSL_SDHC: 1
9 Using default environment
10

11 auto-detected panel HDMI
12 Display: HDMI (1024x768)
13 In: serial
14 Out: serial
15 Err: serial
16 Net: FEC
17 starting USB...
18 USB0: Port not available.
19 USB1: USB EHCI 1.00
20 scanning bus 1 for devices... 2 USB Device(s) found
21 scanning usb for storage devices... 0 Storage Device(s) found
22 switch to partitions #0, OK
23 mmc0 is current device
24 ** Unable to read file imx6board_efi.fd **
25 ** Unrecognized file system type **
26 Error: failed to load UEFI
27 =>

NXP Semiconductors 61

CHAPTER 14. I.MX PORTING GUIDE

14.5 UEFI

UEFI is required to boot Windows. UEFI provides a runtime environment for the Windows bootloader,
access to storage, hardware initialization, ACPI tables, and a description of the memory map. First,
construct a minimal UEFI with only eMMC and debugger support. Then, add devices one-by-one to the
system.

1. Clone our reference implementation of EDK2. It is split between edk2 and edk2-platforms. See
the Readme here: https://github.com/ms-iot/imx-edk2-platforms

2. CopyPlatform\NXP\EXISTING_BOARD toPlatform\<Your Company Name>\YOURBOARD_IMX6_XGB.
3. Rename the .dsc and .fdf files to match the folder name.

14.5.1 DSC and FDF file

Edit the .dsc file and change the following settings as appropriate for your board:

• DRAM_SIZE - set to DRAM_512MB, DRAM_1GB, or DRAM_2GB

• IMX_FAMILY - set to IMX6DQ, IMX6SX, or IMX6SDL

• IMX_CHIP_TYPE - set to QUAD, DUAL, or SOLO

• giMXPlatformTokenSpaceGuid.PcdSdhc[1,2,3,4]Enable - enable the right SDHC instance for
your platform. For example:

1 giMXPlatformTokenSpaceGuid.PcdSdhc2Enable|TRUE

• giMXPlatformTokenSpaceGuid.PcdSerialRegisterBase - set to the base address of the UART
instance that you want UEFI output to go to.

• giMXPlatformTokenSpaceGuid.PcdKdUartInstance - set this to 1, 2, 3, 4, or 5 (6 and 7 are also
available on i.MX7). This is the UART instance that Windows will use for kernel debugging. You
will also need to reference giMXPlatformTokenSpaceGuid.PcdKdUartInstance in your board’s
AcpiTables.inf file. U-Boot must initialize the UART, including baud rate and pin muxing. Win-
dows will not reinitialize the UART.

14.5.2 Board-specific Initialization

The filePlatform\<Your Company Name>\YOURBOARD_IMX6_XGB\Library\iMX6BoardLib\iMX6BoardInit.c

contains board-specific initialization code, which includes:

• Pin Muxing

NXP Semiconductors 62

CHAPTER 14. I.MX PORTING GUIDE

• Clock initialization
• PHY initialization

Much of the same functionality exists in U-Boot. The content in this file should be minimized and
board-specific initialization should be done in U-Boot. The goal is to eventually eliminate this file.

Start with an empty ArmPlatformInitialize() function, and add code as necessary when you bring
up each device. Prefer to add code to U-Boot instead. This will keep pin muxing, clock initialization,
and PHY initialization all in one place.

14.5.3 SMBIOS

Edit Platform\<Your Company Name>\YOURBOARD_IMX6_XGB\Drivers\PlatformSmbiosDxe\

PlatformSmbiosDxe.c and set values appropriate for your board. Settings to change are:

1 mBIOSInfoType0Strings
2 mSysInfoType1Strings
3 mBoardInfoType2Strings
4 mEnclosureInfoType3Strings
5 mProcessorInfoType4Strings
6 mMemDevInfoType17.Size

14.5.4 ACPI Tables

For initial bring up, start with a minimal DSDT that contains only the devices required to boot. Then
add devices one-by-one, and test each device as you bring it up.

Edit Platform\<Your Company Name>\YOURBOARD_IMX6_XGB\AcpiTables\DSDT.asl and remove all
but the following entries:

1 include("Dsdt-Common.inc")
2 include("Dsdt-Platform.inc")
3 include("Dsdt-Gpio.inc")
4 include("Dsdt-Sdhc.inc")

14.5.4.1 SDHC

Edit Dsdt-Sdhc.inc and ensure that the SDHC instance on which your boot media resides is present
and enabled. To simplify bring up you should disable the other SDHC instances. Aminimal SDHC device
node looks like:

1 ////
2

3 uSDHC2: SDIO Slot//

NXP Semiconductors 63

CHAPTER 14. I.MX PORTING GUIDE

4

5 Device (SDH2)
6 {
7 Name (_HID, "FSCL0008")
8 Name (_UID, 0x2)
9

10 Method (_STA) // Status
11 {
12 Return(0xf) // Enabled
13 }
14

15 Name (_S1D, 0x1)
16 Name (_S2D, 0x1)
17 Name (_S3D, 0x1)
18 Name (_S4D, 0x1)
19

20 Method (_CRS, 0x0, NotSerialized) {
21 Name (RBUF, ResourceTemplate () {
22 MEMORY32FIXED(ReadWrite, 0x02194000, 0x4000,)
23 Interrupt(ResourceConsumer, Level, ActiveHigh, Exclusive) { 55 }
24 })
25 Return(RBUF)
26 }
27

28 Name (_DSD, Package()
29 {
30 ToUUID ("DAFFD814-6EBA-4D8C-8A91-BC9BBF4AA301"),
31 Package ()
32 {
33 Package (2) { "BaseClockFrequencyHz", 198000000 }, // SDHC Base/Input Clock: 198MHz
34 Package (2) { "Regulator1V8Exist", 0 }, // 1.8V Switching External

Circuitry: Not-Implemented
35 Package (2) { "SlotCount", 1 }, // Number of SD/MMC slots connected

on the bus: 1
36 Package (2) { "RegisterBasePA", 0x02194000 } // Register base physical address
37 }
38 })////
39

40

41 Child node to represent the only SD/MMC slot on this SD/MMC bus//
42 In theory an SDHC can be connected to multiple SD/MMC slots at//
43 the same time, but only 1 device will be selected and active at//
44 a time//
45

46 Device (SD0)
47 {
48 Method (_ADR) // Address
49 {
50 Return (0) // SD Slot 0
51 }
52

53 Method (_RMV) // Remove
54 {
55 Return (0) // Removable
56 }
57 }

NXP Semiconductors 64

CHAPTER 14. I.MX PORTING GUIDE

58 }

_RMV is an ACPI method that returns whether the slot is removable or not where 1 indicates removable
while 0 means non-removable. eMMC slots should be marked as non-removable, while SD slots should
be also marked as non-removable if it can be used as a boot media not as a secondary storage.

_DSM is an ACPI method that is used by the SD bus to perform very specialized and platform dependent
tasks. It is currently used by Windows to perform SD bus power control On/O� which is required
during 3V3/1V8 SD voltage switching sequence. For bring-up, the _DSM is not required and in that
case the Regulator1V8Exist field should be set to 0 to indicate that SD voltage switching is not
implemented/supported.

1 Package (2) { "Regulator1V8Exist", 0 }, // 1.8V Switching External Circuitry: Not implemented

14.5.4.2 PWM

For the best experience using the PWMWinRT APIs from UWP apps some additional device properties
need to be set. Documentation on these device interface properties can be found here in the Setting
device interface properties section of the PWM DDI MSDN article.

For an example of setting the PWM device interface properties statically from an inf file, see the Virtual
PWM driver sample.

For an example on how to read the ACPI _DSD fromwithin a kernel driver, see the i.MX SDHC driver
driver/sd/imxusdhc.

PWMReferences:

• PWM DDI
• PWM Driver Reference
• PWMWinRT APIs
• Virtual PWM Driver Sample

14.5.5 Security TAs

UEFI includes a pair of OP-TEE Trusted Applications (TAs) which implement a firmware TPM, and a UEFI
authenticated variable store. These binaries should generally not require re-compiling. However, if
your OP-TEE has been changed (including build flags) it may introduce incompatibilities. See Updating
the TAs for instructions on adding new TAs to your firmware binaries.

NXP Semiconductors 65

https://docs.microsoft.com/en-us/windows-hardware/drivers/spb/pulse-width-controller%20driver#setting-device-interface-properties
https://docs.microsoft.com/en-us/windows-hardware/drivers/spb/pulse-width-controller%20driver#setting-device-interface-properties
https://github.com/Microsoft/Windows-iotcore-samples/tree/develop/Drivers/VirtualPWM
https://github.com/Microsoft/Windows-iotcore-samples/tree/develop/Drivers/VirtualPWM
https://docs.microsoft.com/en-us/windows-hardware/drivers/spb/pulse-width-controller%20driver
https://docs.microsoft.com/en-us/windows/desktop/devio/pwm-api
https://docs.microsoft.com/en-us/uwp/api/windows.devices.pwm
https://github.com/Microsoft/Windows-iotcore-samples/tree/develop/Drivers

CHAPTER 14. I.MX PORTING GUIDE

They are included in UEFI by default but can be omitted with the CONFIG_NOT_SECURE_UEFI=1 flag.
The TAs require OP-TEE to have access to secure storage (eMMC’s RPMB). Windows will not support
BitLocker, Secure Boot, or persistent firmware variable storage without these TAs enabled.

14.5.6 Building UEFI

For adetailed guideonhow tobuild the i.MXUEFI firmware image, please refer toBuilding andUpdating
ARM32 Firmware or Building and Updating ARM64 Firmware.

14.5.7 Testing UEFI

To test UEFI, you will need an SD card with a FAT partition. The easiest way to get an SD card with the
right partition layout is to flash the FFU of the existing board, then replace the firmware components.

1. Build FFU

2. Flash the FFU to your SD card

dism /apply-image /imagefile:BoardTestOEMInput.xml.Release.�u /applydrive:\.\PhysicalDriveX
/skipPlatformCheck

3. Use the dd command to flash firmware_fit.merged to the SD card.

4. Replace uefi.fit on the EFIESP partition of the SD card with your uefi.fit.

Power on the system. You should see UEFI run a�er U-Boot, and UEFI should attempt to load Windows.

14.6 Booting Windows

As long as the serial console and SDHC device node are configured correctly in UEFI, the Windows
kernel should get loaded. Once you see the kernel looking for a debugger connection, you can close
the serial terminal and start WinDBG.

1 windbg.exe -k com:port=COM3,baud=115200

If you hit an INACCESSIBLE_BOOT_DEVICE bugcheck, it means there’s a problemwith the storage driver.
Run !devnode 0 1 to inspect the device tree, and see what the status of the SD driver is. You can dump
the log from the SD driver by running:

1 !rcdrkd.rcdrlogdump imxusdhc.sys

A�er you have a minimal booting Windows image, the next step is to bring up and test each device.

NXP Semiconductors 66

15 Updating the BSP port
Below is a list of changes that may have occurred since any initial enablement of Windows 10 IoT Core
on your i.MX platform.

15.1 Reworked firmware build system

The firmware build system now builds entirely in WSL and Linux and uses a makefile as the only front-
end. For more information on firmware build system-setup and usage, see the Building and Updating
ARM32 Firmware or Building and Updating ARM64 Firmware guide.

In order to use the Makefile, you will need to have a folder for your board in the firmware folder. To
set up this firmware folder, run NewiMX6Board.ps1, which is documented here. Please note that this
firmware folder namemust match the EDK2-Platforms name for your board.

15.2 FIT load for OP-TEE and U-Boot Proper inside of SPL

In order to use existing loading infrastructure, we have updated the way U-Boot proper and OP-TEE
are packaged so that SPL can load and run them as a Flattened Image Tree. When built through
the firmware Makefile the required firmware_fit.merged file will be generated if all of the features
required for FIT in SPL are enabled in your U-Boot defconfig.

15.3 FIT loading UEFI inside of U-Boot Proper

We have updated the way we run the UEFI firmware from U-Boot proper to use U-Boot’s built in FIT
boot path.

• Thedefconfig settingsCONFIG_UEFI_BOOT,CONFIG_UEFI_LOAD_ADDR, andCONFIG_UEFI_IMAGE_NAME
are no longer required and should be removed.

• The UEFI binary is no longer called IMX6BOARD_EFI.fd or imxboard_efi.fd on the EFI partition.
Instead the UEFI is built into a Flattened Image Tree called uefi.fit and is stored on the EFI
partition. The uefi.fit packaging is done by the mkimage tool and is done automatically when
EDK2 is built through the firmware Makefile.

• Thenewbootpathno longerusesahardcodedUEFIBOOTCOMMAND, insteadCONFIG_BOOTCOMMAND
is customized directly in the defconfig. CONFIG_USE_BOOTCOMMAND and CONFIG_CMD_BOOTMmust

NXP Semiconductors 67

CHAPTER 15. UPDATING THE BSP PORT

be enabled to make sure that the bootcommand is enabled, and that the bootm command is
available.

• CONFIG_IMX_PERSIST_INIT has been added so that U-Boot proper does not disable the IPU
before booting into UEFI, keeping the display on. UEFI assumes that the IPU is enabled and
configured when the GOP driver loads.

1 CONFIG_USE_BOOTCOMMAND=y
2 CONFIG_BOOTCOMMAND="fatload mmc 0:2 0x80A20000 /uefi.fit; bootm 0x80A20000"
3 CONFIG_CMD_BOOTM=y
4 CONFIG_IMX_PERSIST_INIT=y

• Some board header files statically define a CONFIG_BOOTCOMMAND, which will conflict with the
one set in the defconfig. If your board header has a #define CONFIG_BOOTCOMMAND, wrap it in
an #if !defined block like below:

1 #if !defined(CONFIG_BOOTCOMMAND)
2 #define CONFIG_BOOTCOMMAND \
3 "run findfdt;" \
4 ...
5 "else run netboot; fi"
6 #endif /* !defined(CONFIG_BOOTCOMMAND) */

• If you previously disabled CONFIG_DISTRO_DEFAULTS, youmay need to re-enable it to pull in
dependencies for bootm’s FIT boot: CONFIG_DISTRO_DEFAULTS=y

15.4 Miscelaneous U-Boot defconfig settings

• CONFIG_BOOTDELAY=-2boots theCONFIG_BOOTCOMMANDwithoutdelayor checking serial input
to interrupt. This is important because WinDBG will interrupt boot if U-Boot checks serial input.

• The list of additional U-Boot options used when booting Windows is available here: U-Boot
Configuration Options

NXP Semiconductors 68

16 Windows 10 IoT Video Processing Unit on i.MX
Platform

This chapter describes the Video Processing Unit on i.MX8 Quad and i.MX8 Mini.

16.1 Features

• HW Support of playback video clips encoded with h264 and h265 codec.
• Media Transport Foundation API supported.

16.2 Limitations

• GPU operations such as resize/scale/crop etc. don’t have HW support. These operations are
computed by CPU andmay cause high CPU load and playbackmay be very slow. Thus, delivered
IoTCore Media Player has disabled scaling by default. However clips having di�erent video
resolution and bu�er dimensions force scale operation in VPU driver, that may also cause high
CPU load. Progressive clips also require crop operation. This limitation will be resolved by
implementation of GPU driver.

16.3 How to play video

1. Boot WIN10 on the target.
2. Download test clip:

1. https://mango.blender.org/download/
2. http://�p.halifax.rwth-aachen.de/blender/demo/movies/ToS/tears_of_steel_1080p.mov

3. Copy clip on USB drive and attach or copy movie directly into target to this location:

1. C:\Data\Users\DefaultAccount\Videos

4. On the target, from Start run IoTCore Media Player.

1. Click “browse” and select “RemovableStorage”.
2. Find your movie and select.
3. Video should play automatically. Otherwise click play button below.

NXP Semiconductors 69

17 Revision History

Table 17.1: Revision history

Revision number Date Substantive changes

W1.1.0 4/2020 Production release for i.MX6,
i.MX7 and i.MX8M platform.
New i.MX8MN board
supported.

W1.0.0 10/2019 Initial engineering release for
i.MX6, i.MX7 and i.MX8M
platform.

NXP Semiconductors 70

	1 Overview
	1.1 Audience
	1.2 Conventions
	1.3 Directories
	1.4 References

	2 Introduction
	3 Feature List per Board
	4 Flash a Windows IoT Core image
	5 Basic Terminal Setup
	6 Basic Board Setup
	7 Booting WinPE and Flashing eMMC
	7.1 Identifying boot loader location
	7.2 Preparing an FFU to be flashed to eMMC
	7.3 Creating and deploying the WinPE Image

	8 Windows 10 IoT Boot Sequence on i.MX Platform
	8.1 On-chip ROM code
	8.2 SPL
	8.3 OP-TEE
	8.4 U-Boot Proper
	8.5 UEFI
	8.6 SD/eMMC Layout

	9 Securing Peripherals on i.MX using OP-TEE
	9.1 OP-TEE
	9.2 Windows

	10 Building Windows 10 IoT Core for NXP i.MX Processors
	10.1 Building the BSP
	10.1.1 Required Tools
	10.1.1.1 Visual Studio 2017
	10.1.1.2 Windows Kits from Windows 10, version 1809
	10.1.1.3 IoT Core OS Packages

	10.1.2 One-Time Environment Setup
	10.1.3 Creating test FFU
	10.1.3.1 Start generating the FFU
	10.1.3.2 Building the FFU for other boards

	10.1.4 Building the FFU with the IoT ADK AddonKit
	10.1.5 How to use the signed prebuilt HAL drivers with the BSP

	11 Building and Updating ARM32 Firmware
	11.1 Setting up your build environment
	11.2 Building the firmware
	11.3 Adding updated firmware to your ARM FFU
	11.4 Deploying firmware to an SD card manually
	11.4.1 Bootable Firmware without installing an FFU
	11.4.2 Deploying U-Boot and OP-TEE (firmware_fit.merged) for development
	11.4.3 Deploying UEFI (uefi.fit) for development
	11.4.4 Updating the TAs in UEFI
	11.4.4.1 Clearing RPMB

	12 Building and Updating ARM64 Firmware
	12.1 Setting up your build environment
	12.2 Building the firmware
	12.3 Adding updated firmware to your ARM64 FFU
	12.4 Deploying firmware to an SD card manually
	12.4.1 Deploying U-Boot, ATF, OP-TEE (flash.bin) and UEFI (uefi.fit) for development

	13 Adding New Boards and Drivers to the BSP
	13.1 Adding a New Board
	13.1.1 Initialize a new board configuration
	13.1.2 Setup the solution in Visual Studio
	13.1.3 Update the firmware for your board
	13.1.4 Build the FFU in Visual Studio
	13.1.5 Board Package Project Meanings

	13.2 Adding a New Driver
	13.2.1 Adding a New Driver to the Solution
	13.2.2 Adding a Driver to the FFU

	14 i.MX Porting Guide
	14.1 U-Boot
	14.1.1 U-Boot Configuration Options
	14.1.2 Adding a new board to U-Boot

	14.2 OP-TEE
	14.3 Setting up your build enviroment to build firmware_fit.merged
	14.4 Flash firmware_fit.merged to your SD card.
	14.4.1 Testing SPL
	14.4.2 Testing OP-TEE
	14.4.3 Testing U-Boot

	14.5 UEFI
	14.5.1 DSC and FDF file
	14.5.2 Board-specific Initialization
	14.5.3 SMBIOS
	14.5.4 ACPI Tables
	14.5.4.1 SDHC
	14.5.4.2 PWM

	14.5.5 Security TAs
	14.5.6 Building UEFI
	14.5.7 Testing UEFI

	14.6 Booting Windows

	15 Updating the BSP port
	15.1 Reworked firmware build system
	15.2 FIT load for OP-TEE and U-Boot Proper inside of SPL
	15.3 FIT loading UEFI inside of U-Boot Proper
	15.4 Miscelaneous U-Boot defconfig settings

	16 Windows 10 IoT Video Processing Unit on i.MX Platform
	16.1 Features
	16.2 Limitations
	16.3 How to play video

	17 Revision History

