

RELEASE NOTES

JN518x ZigBee 3.0 SDK

JN-SW-4470

Build v2042

 NXP Semiconductors

For the contact details of your local NXP office or distributor, refer to:

 www.nxp.com

http://www.nxp.com/

 JN518x ZigBee 3.0 SDK

Release Notes

2 © NXP Semiconductors 2018 JN-RN-0064 v2042

CONTENTS

RELEASE SUMMARY (v2042) 3

1. Software Components 3

2. Supported Hardware Products 4

3. Installation 4
3.1 MCUXpresso Installation 6
3.2 Importing Projects into MCUXpresso 7
3.3 Installation of ZPSConfig plugins: 9

4. Release Details 12
4.1 Known Feature Limitations 12
4.2 Modifications Required 12

4.2.1 Debug Configuration 12
4.2.2 Programming firmware through the flash programmer 16
4.2.3 Porting to R22 stack: 18
4.2.4 OTA configuration: 20
4.2.5 Application specific updates 21

4.3 Changes from v1811 release 36
4.4 Known Issues 39

5. Related Documentation 39

JN518x ZigBee 3.0 SDK
Release Notes

JN-RN-0064 v2042 © NXP Semiconductors 2018 3

RELEASE SUMMARY (v2042)
The JN518x ZigBee 3.0 Software Developer’s Kit (JN-SW-4470) contains software
resources needed to develop ZigBee 3.0 applications for the NXP JN518x wireless
microcontrollers on Windows and Linux platforms. This SDK must be installed on top

of the MCUXpresso toolchain (MCUXpressoIDE_10.2.1 [Build 795]) (see Section 3).

This is a certified Zigbee PRO stack (Revision 22).

1. Software Components
This release of the JN-SW-4470 software includes the components and versions
detailed in the SW-Content-Register-JN-SW-4470.txt.

https://www.collabnet.nxp.com/sf/frs/do/downloadFile/projects.lprf_sdk/frs.zigbee8x.jn_sw_4470_jn518x_zigbee_3_0_13/frs34001?dl=1

 JN518x ZigBee 3.0 SDK

Release Notes

4 © NXP Semiconductors 2018 JN-RN-0064 v2042

2. Supported Hardware Products
This software release supports the following hardware products:

Chips Modules Evaluation Kits

JN5180-001

(ES2 Only)

JN5180-M10
(OM15059)

OM15076-3 Carrier Board

OM15076-1 Carrier Board

OM15081-1 Light/Sensor
Expansion Board

OM15082-2 Generic
Expansion Board

JN518x USB Dongle

3. Installation
This SDK (JN-SW-4470) in intended to be used with Eclipse-based MCUXpresso

(MCUXpressoIDE_10.2.1 [Build 795]). The SDK is distributed as a self-extracting

executable.

Installation steps:

1. Download the SDK installer (JN-SW-4470 JN518x Zigbee 3.0 v2042.exe)

2. Run the executable (JN-SW-4470 JN518x Zigbee 3.0 v2042.exe) in to a
convenient location, such as C:\NXP\mcux. The SDK contains the device
drivers, framework, connectivity stack and example projects.

3. Download MCUXpresso – see section 3.1. MCUXpresso toolchain must be
installed at the same location as the SDK. After installing the SDK and
MCUXpresso IDE you should have the directory structure shown below:

4. Launch the MCUXpresso installer and follow the on-screen instructions to
install.

5. To add JN518x support to MCUXpresso it is necessary to add a number of files
to the installation. These files are provided within the SDK which was installed
during step 2. These can be found in the ‘C:\NXP\mcux\JN-SW-
4470\tools\lpcxpresso\bin’ folder.

6. Copy the ‘C:\NXP\mcux\JN-SW-4470\tools\lpcxpresso\bin’ folder to

‘C:\NXP\mcux\ MCUXpressoIDE_10.2.1 _795\ide’. There should already be a

‘bin’ folder there and the copied version should be merged with it. If using

JN518x ZigBee 3.0 SDK
Release Notes

JN-RN-0064 v2042 © NXP Semiconductors 2018 5

Windows Explorer to copy the folder across, Windows will complain that it is
there already: this is correct, so click ‘Yes’ and/or ‘Copy and Replace’ as
required.

Note that using the command line to copy the files may incorrectly set the
access permissions whereas CTRL-C and CTRL-V in Windows Explorer work
fine.

7. Run ‘mcuxpressoide.exe’ and select a folder to use as Workspace. This should
be the folder where the SDK was installed ‘C:\NXP\mcux\JN-SW-
4470\workspace’.

8. JN518x bootloader requires an image signature to verify the validity of the
image. The Binary image generated is signed after the image is built in a two-
stage process. The image signing tool is implemented in python. This requires
an installation of python to exist. Python 2.7 is required. Python can be
downloaded from the following web page:

https://www.python.org/downloads/

Once python is installed, it should be added to the windows path.

9. The python file is now using a crypto module, therefore you may have to install
the module to compile successfully:
C:\Python27\Scripts>pip install pycryptodome (python 2.7.13
(https://www.python.org/downloads/release/python-2713/) is required to have the
pip tool)

10. The application notes are not provided as part of the Zigbee stack installer. They
are provided separately as zips. The application notes should be extracted into
the workspace created in step 7.

C:\NXP\mcux\JN-SW-4470\workspace

The directory structure may look like this:

https://www.python.org/downloads/
https://www.python.org/downloads/release/python-2713/

 JN518x ZigBee 3.0 SDK

Release Notes

6 © NXP Semiconductors 2018 JN-RN-0064 v2042

3.1 MCUXpresso Installation

MCUXpresso can be obtained from the following NXP web page:

http://www.nxp.com/mcuxpresso/ide

To develop JN518x applications without limitation, we recommend that you purchase
the Pro edition of MCUXpresso, however the free edition you can develop with
applications up to 256KB.

The required version of MCUXpresso for this SDK release is:

MCUXpressoIDE_10.2.1 [Build 795] (MCUXpressoIDE_10.2.1_795)

Important: This is the version with which the libraries within the SDK were compiled

and verified. Other versions of MCUXpresso may not be compatible with the contents

of the SDK and cannot be guaranteed to work or be supported with the JN51xx
devices.

To obtain MCUXpresso and install it on your development machine:

1. If you do not already have a web account with NXP, navigate to www.nxp.com
and create an account.

2. Sign in to your NXP web account.

3. Navigate to the page www.nxp.com/mcuxpresso/ide

4. Select the Downloads tab and then click the Download button.

5. Check whether the displayed version is the recommended version indicated
above:

 If it is the recommended version, download it.

 If it is not the recommended version, click Previous and then select the
recommended version and download it.

Full installation details are provided in the MCUXpresso IDE Installation and

Licensing Guide, available on the Documentation tab of the above web page.

http://www.nxp.com/mcuxpresso/ide
http://www.nxp.com/
http://www.nxp.com/lpcxpresso

JN518x ZigBee 3.0 SDK
Release Notes

JN-RN-0064 v2042 © NXP Semiconductors 2018 7

3.2 Importing Projects into MCUXpresso

To import the example projects into MCUXpresso, click File -> Import… This will
bring up a dialogue box. Select General -> Existing Projects into Workspace then
press ‘Next’:

The next dialogue box allows you to select the location that the projects can be
found at. ‘Select root directory’ will already be selected.

Click the ‘Browse…’ button to the right and then navigate to the folder where the
SDK was installed. Navigate further into ‘C:\NXP\mcux\JN-SW-4470\workspace’
then press ‘OK’.

Back in the original dialogue box ensure that ‘Copy projects into workspace’ is not
selected, then press ‘Finish’:

 JN518x ZigBee 3.0 SDK

Release Notes

8 © NXP Semiconductors 2018 JN-RN-0064 v2042

The projects will now appear in the Project Explorer panel. To build one, select it
then press the build button on the toolbar (looks like a hammer).

JN518x ZigBee 3.0 SDK
Release Notes

JN-RN-0064 v2042 © NXP Semiconductors 2018 9

3.3 Installation of ZPSConfig plugins:

The Zigbee stack configuration plugins have been updated to be hosted as part of the
MCUXpresso IDE.

The plugins and features can be found located in the SDK folder structure as below:

C:\NXP\mcux\JN-SW-
4470\tools\zigbee_3.0\Eclipse_plugins\com.nxp.sdk.update_site

1. To add the plugins. On the top menu pane of the MCUXPresso select the Help-
>Install New Software option

2. This should open a pop up menu selection as below:

 JN518x ZigBee 3.0 SDK

Release Notes

10 © NXP Semiconductors 2018 JN-RN-0064 v2042

Give the plugins a Name. This can be anything. Select the local button and browse to
the location of the plugins which should be

C:/NXP/mcux/JN-SW-
4470/tools/zigbee_3.0/Eclipse_plugins/com.nxp.sdk.update_site/

3. This should pull the available features to install;

JN518x ZigBee 3.0 SDK
Release Notes

JN-RN-0064 v2042 © NXP Semiconductors 2018 11

4. Select the features listed and then press the “Next” button. Accept the subsequent
Licence agreement and warning of Signature validation. Then press the “Finish”
button and let MCUXpresso restart.

5. If the plugins have been successfully installed it will be listed in the “already installed”
software list.

 JN518x ZigBee 3.0 SDK

Release Notes

12 © NXP Semiconductors 2018 JN-RN-0064 v2042

4. Release Details

4.1 Known Feature Limitations

The following features are not included in this release:

Feature Description

Free RTOS There is no RTOS support in this release. The application is designed
to work as a bare metal implementation.

Flash programmer support in IDE The flash programmer provided in this release is a command line
variant. There is no MCU xPresso plugin for the JN518x. The
command line flash programmer when used with multiple boards
connected can fail to recognise COM ports.

The MCU xPresso does support flashing of images through the SWD.

This requires the setting up of the debug configuration detailed in
section 4.2.1. There is contention of signal lines between the
OM1580x expansion boards. The SWD image flashing mechanism will
fail if the expansion board is connected.

Hardware limitation SW4/DIO4 on OM15082 should not be used as mask for Wake.

Peripheral Drivers All peripherals working except the DMIC

JN5189 ES1 This SDK is not compatible with ES1 devices and must not be used
with ES1 device.

PSECT locations The PSECT (protected sectors of flash) is not in the normal application
flash use domain. It is used to store certain chip related configurations.
It is possible to write to these pages through the flash programmer. It is
strongly advised not to write to these locations. Writing to these
sectors outside their intended use will cause the device to not function
correctly.

4.2 Modifications Required

The JN518x SDK is different from previous JN516x and JN517x SDKs. The
Peripherals are different and the layout of the SDK is also different.

The application notes must be placed at C:\NXP\mcux\JN-SW-4470\workspace.

The Zigbee stack components can be found at C:\NXP \mcux\JN-SW-
4470\middleware\wireless\zigbee3.0.

The additional tools like the ZPSConfig parser and the Eclipse plugins for the
ZPSconfig diagram can be found at C:\NXP \mcux\JN-SW-4470\tools\zigbee_3.0.

IT IS STRONGLY ADVISED THAT THESE INSTRUCTIONS ARE FOLLOWED
CAREFULLY!

4.2.1 Debug Configuration

It is possible to flash the image for the JN518x by using the SWD (Single Wire Debug)
functionality available in MCU xPresso.

JN518x ZigBee 3.0 SDK
Release Notes

JN-RN-0064 v2042 © NXP Semiconductors 2018 13

Select the dropdown menu next to the “bug” symbol on the selection panel of MCU
xPresso IDE.

Select “Debug Configuration”.

The selection would bring up a pop up configuration box.

On the left-hand pane select the C/C++ NXP MCU Application and right click. That
should provide drop down options, from the list select “New”.

 JN518x ZigBee 3.0 SDK

Release Notes

14 © NXP Semiconductors 2018 JN-RN-0064 v2042

The subsequent pop up configuration box allows creating a debug configuration for the
current build configuration.

In the Name box type a name of your choice for your current configuration. E.g. JN-
AN-1243-Zigbee-3-0-Base-Device Coordinator

For the C/C++ Application box, use the browse button to find the “.axf” file for the
image you want to debug/Flash.

e.g. C:\NXP\mcux\JN-SW-4470\workspace\JN-AN-1243-ZigBee-3-0-Base-Device-
Template-for-JN518x\Coordinator\Build\jn518x_mcux\
Coordinator_JN5180_DONGLE.axf

For the build configuration, use the dropdown menu to select “Use Active”. Then save
the changes by pressing the “Apply” button.

JN518x ZigBee 3.0 SDK
Release Notes

JN-RN-0064 v2042 © NXP Semiconductors 2018 15

In the Debug Configuration pop up window, the Debugger needs to be configured.

Select the “Debugger” Tab.

This should update the existing Debug configuration pop up window with the possible
configurations for the Debugger.

Tick the option for “Stop on startup at” and in the box type “main”.

Update the “Connect script” to be “JN518xConnect.scp”.

The “Emulator Selection” needs to be “LinkServer” and the “Debug options template” is
“NXP JN5189 (*)”

To save these settings press “Apply”.

Now just press “Debug” and connect your board if not already connected. The board
will be programmed with the image and this should allow a debug session to be
started.

 JN518x ZigBee 3.0 SDK

Release Notes

16 © NXP Semiconductors 2018 JN-RN-0064 v2042

By default, there are no debug symbols present so it’s possible that no source code
would be presented when running a debug session.

To build with debug symbols, the following needs to be added to the Makefile
“DEBUG=HW” and a clean build of the application is now required.

4.2.2 Programming firmware through the flash programmer

JN-SW-4407 JN51xx Production Flash Programmer is available as a
standalone application which can be used to program the JN518x device.

To put the JN518x device into programming mode, The ISP button on the
development board needs to be held pressed and then RESET is pressed
once.

If programming different firmware or programming a new firmware for the first
time the persistent data which is held in flash needs to be erased.

To erase all the flash:

 ./JN518xProgrammer.exe -V 2 -P 115200 -s COM56 -e FLASH: 646656@0

Or

./JN518xProgrammer.exe -V 2 -P 115200 -s COM56 -e FLASH

JN518x ZigBee 3.0 SDK
Release Notes

JN-RN-0064 v2042 © NXP Semiconductors 2018 17

The sequence of parameters passed to the flash programmer are important. When
programming the device care should be taken to have the -e option before the -p
option.

Help on various options supported by the standalone command line flash
programmer application is available through the -h or --help.

 JN518x ZigBee 3.0 SDK

Release Notes

18 © NXP Semiconductors 2018 JN-RN-0064 v2042

4.2.3 Porting to R22 stack:

The Zigbee PRO R22 version of the stack allows for multiple MAC interfaces to be
present. This is to support both 2.4G and 868 MHz frequency bands using the single
Zigbee stack. To address this a MAC interface table needs to be configured in the ZPS
Config diagram.

The Mac Interface list can be found as an option for the node. For e.g. if you have
Zigbee network with a router node. You can select the router node and press the right
mouse button to provide the options. The Mac Interface list can be found under New
Child -> Mac Interface List.

After adding the Mac Interface List, select the Mac Interface list and press the right
mouse button to provide the options. The Mac interface can be found under New
Child -> Mac Interface.

JN518x ZigBee 3.0 SDK
Release Notes

JN-RN-0064 v2042 © NXP Semiconductors 2018 19

After adding the Mac Interface, the properties can be updated. The default is 2.4G.
This default can be kept. The “Router Allowed” properties should be set to “true”.

 JN518x ZigBee 3.0 SDK

Release Notes

20 © NXP Semiconductors 2018 JN-RN-0064 v2042

4.2.4 OTA configuration:

OTA cluster is enabled through the ZCL_options.h file. Please refer to the NXP Zigbee
3.0 clusters user guide (JN-UG-3115) for more details on this.

The OTA cluster requires initialisation of the location where the upgrade image can be
stored. The application provides this through eOTA_AllocateEndpointOTASpace API.

Each Page on JN518x is 512 bytes, Usable flash size is 632K. Allowing for 32K for
PDM (start page 1152) and 24K for customer data, leaves a usable flash size for
image at 576K. If we Split it into 2 sections to support OTA. It means 288K becomes
max image size. Each 288K section would be 576 flash pages. This could be
represented as 32K sectors to keep in line with legacy devices.

So, for allocation to the OTA cluster:

uint8 u8MaxSectorPerImage = 0;

uint8 u8StartSector[1] = {9}; /* So next image starts at 9*32*1024 = 288K offset*/

u8MaxSectorPerImage = 9 ; /* 9 *32* 1024 = 288K is the maximum size of the image
*/

 sNvmDefs.u32SectorSize = 512; /* Sector Size = 512 bytes*/

The OTA checks for the presence of the well-known Zigbee09 key at a fixed location
within the image. This provides a convenient mechanism to test the decryption of an
encrypted image and an additional sanity check to make sure the image is a valid
image to progress downloading. Please note that this is not the mechanism for a full
image validation. It is recommended that for OTA an encrypted image with the CRC
check be used. That provides a better validation of an OTA image.

Each application note has an OTA_BUILD folder which holds the OTA compatible
images.

LinkKey_3.txt is required for creation of the OTA image. That holds the Key which can
be used for validation purpose as described above. There are
configOTA_JN518x_Cer_Keys_HA_Light.txt and
configOTA_JN518x_Cer_Keys_HA_Light_Generic.txt which provide the OTA image
generator with the offset for the key.

Prior to this release the values were LinkKey_3.txt,02c0,16

This must now be LinkKey_3.txt,01b0,16

This release of the SDK provides the ability to change the default key used for
encryption.

The upgrade image MUST be encrypted with the same key as that
set in the currently running image. To change the keys for a build,
the running image must be physically programmed using the flash
programmer and then subsequent upgrade images can be built with
the new key and OTA can start.

To set the encryption key the Makfile must be updated as follows:

JN518x ZigBee 3.0 SDK
Release Notes

JN-RN-0064 v2042 © NXP Semiconductors 2018 21

Change:

ifeq ($(OTA_ENCRYPTED),1)

CFLAGS += -DOTA_ENCRYPTED

Endif

To:

ifeq ($(OTA_ENCRYPTED),1)

CFLAGS += -DOTA_ENCRYPTED

ENCRYPTION_KEY = 1234567890ABCDEFA1B2C3D4E5F6F1B4

CFLAGS += -DCLD_OTA_KEY=\"$(ENCRYPTION_KEY)\"

endif

The key used internally within OTA must also be passed to the JET tool.

The following option is added:

$(DEV_BLD_DIR)/../OTABuild/LightCreateOtaEncClient.bat
$(DEV_BLD_DIR)/../OTABuild $(JET_BASE) $(MANUFACTURER_CODE)
$(OTA_STRING) $(JET_VERSION) $(JENNIC_CHIP_FAMILY)
$(OTA_DEVICE_ID) $(ENCRYPTION_KEY)

In the *.bat which passes the command line options to the JET tool must also
be updated, for e.g:

$2/JET.exe -m bin -f Client.bin -e Client_Enc.bin -k 0xffffffffffffffffffffffffffffffff -i
0x00000010111213141516171800000000 -v $5 -j $4 --sector_size=512

The -k option should be changed to:

$2/JET.exe -m bin -f Client.bin -e Client_Enc.bin -k $8 -i
0x00000010111213141516171800000000 -v $5 -j $4 --sector_size=512

4.2.5 Application specific updates

4.2.5.1 Porting from ES1 to ES2:

All reference to

PMC->CTRL |= PMC_CTRL_PWRUP_ZIGBLE(1);

 while((PMC->PWRSWACK & PMC_PWRSWACK_PDZIGBLE(1)) != 1);

 JN518x ZigBee 3.0 SDK

Release Notes

22 © NXP Semiconductors 2018 JN-RN-0064 v2042

should be removed.

 FIREWALL->UPDATE_VALUE = 0x80000005;

 FIREWALL->UPDATE_SETTING = 0x7 << 8;

And any other references to FIREWALL should also be removed.

4.2.5.2 General Application notes updates:

The watchdog clocks are not enabled by default. These need to be enabled by calling

 /* WWDT clock config (32k oscillator, no division) */
 CLOCK_AttachClk(kOSC32K_to_WDT_CLK);
 CLOCK_SetClkDiv(kCLOCK_DivWdtClk, 1, true);

 In void BOARD_InitClocks(void)

To debug the various exceptions vDebugExceptionHandlersInitialise();

Must be called in void vAppMain(void)

The SDK drivers do not set the priority of the various peripheral interrupts. These need
to be set in the application.

These should be done after all the hardware initialisation. These can be added to

void APP_vSetUpHardware(void)

#define APP_BASE_INTERRUPT_PRIORITY (5)

#define APP_WATCHDOG_PRIOIRTY (1)

int iAppInterrupt;

 for (iAppInterrupt = DMA_IRQn;
 iAppInterrupt < SHA_IRQn;

iAppInterrupt ++)
 {
 NVIC_SetPriority(iAppInterrupt, APP_BASE_INTERRUPT_PRIORITY);
 }
 NVIC_SetPriority(WDT_BOD_IRQn, APP_WATCHDOG_PRIOIRTY);

The transition time parameter is now added for recall scene command. Please refer to
the ZCL specification for details.

4.2.5.3 RAM saving on End Devices:

The application notes can use the following configuration to optimise the amount of
RAM they use.

There are number of routing configurations which are present in the ZPS configuration
editor. These are however not applicable for end devices.

JN518x ZigBee 3.0 SDK
Release Notes

JN-RN-0064 v2042 © NXP Semiconductors 2018 23

The tool ignores the settings for end device automatically. It is not possible to set these
configuration to 0, so they can be left at 1.

ActiveNeighbourTableSize="2"

RouteDiscoveryTableSize="1"

RoutingTableSize="1"

BroadcastTransactionTableSize="2"

RouteRecordTableSize="1"

MacTableSize="16" [Assuming Address map table of 14, This should be sized to
Neighbour table + Address map table]

NumNPDUs="9"

apduZDP Instances="5" [Depends on application and may be reduced further]

apduZCL Instances="5" [Depends on application and may be reduced further]

BindingTable Size="16" [Depends on application and may be reduced further]

In addition to these there are number of queues which are configured for the stack.

#define MLME_QUEQUE_SIZE 4

#define MCPS_QUEUE_SIZE 2

#define MCPS_DCFM_QUEUE_SIZE 4

#define APP_QUEUE_SIZE 4

/* Stop clock to SRAM1; saves 10uA – Only do this if not using the second memory
bank.*/

 SYSCON->AHBCLKCTRLCLR[0] =
SYSCON_AHBCLKCTRLCLR0_SRAM_CTRL1_CLK_CLR_MASK;

4.2.5.4 Minimum RAM retention during sleep

WARNING:

It is possible to mark application data as being safe to discard during sleep with RAM
held, by placing it into sections “.bss.discard.app” or “.data.discard.app” when using
the minimum RAM retention feature. This data is also discarded when using the
AppBuild16kEndDevice.ld linker script. The discarded data is also re-initialised on
warm start: data in “ .bss.discard.app” is set to zero and data in “.data.discard.app” is
reset to its initial value.

This SDK provides support for a feature to reduce the amount of RAM retention to
minimum of 4Kb during sleep with RAM held.

The method of determining the RAM usage is to look at the _vStackTop variable in the
map file.
e.g.

 JN518x ZigBee 3.0 SDK

Release Notes

24 © NXP Semiconductors 2018 JN-RN-0064 v2042

0x040151e8 PROVIDE (_vStackTop, DEFINED
(__user_stack_top)?__user_stack_top:(((((__top_RAM0 - SIZEOF (.data)) - SIZEOF
(.bss)) - SIZEOF (.heap)) - 0x20) & 0xfffffff8))

Top of RAM bank 0 is
__top_RAM0 = 0x4000400 + 0x15c00; /* 87K bytes */ = 0x4016000

If you subtract the two = 0x4016000 - 0x040151e8 = 0xE18 = 3608 bytes or ~3.5K.
The processor stack grows and shrinks below _vStackTop as the application runs,
growing as functions or interrupt handlers are called and shrinking when they are
exited. At the point that the device goes to sleep, from the application’s idle loop, the
active part of the processor stack will be very small but it will not be 0. This active part
of the processor stack is also retained through sleep, so it is important that the
retained data + the retained processor stack is less than 4kB. With the JN-AN-1245
dimmer switch I measured the retained processor stack as 72 bytes, but customer
applications may be different.

As the value varies from one application to another, it is easiest to read it back from a
running device by looking at the PWRM’s internal variable that it uses to decide which
RAM banks to retain. To do this, after warm start:
extern volatile uint8 *s_pu8Stack;

DBG_vPrintf(TRUE, "Retained RAM low water mark:%x\n",

(uint32)s_pu8Stack);

You need the value to be at least 0x04015000 for 4kB retention or at least
0x04014000 for 8kB retention.

This release includes timing optimisations for the radio driver. To support these, the
application should:

1. Provide bRadioCB_WriteNVM() and u16RadioCB_ReadNVM() functions, as provided

in latest JN-AN-1245 Common_Switch\Source\app_main.c file. This allows the radio
driver to store calibration settings in PDM so that it does not have to re-calculate
them on cold starts. Without this, or if PDM has been erased, cold start will be
55.6ms longer because the radio driver will have to perform a full calibration

2. After calling (E_AHI_SLEEP_OSCON_RAMON), call
PWRM_vForceRadioRetention(TRUE); This causes the radio retention registers to
be powered through sleep. Without this, warm start will be 4.72ms longer because
the radio driver will have to perform a partial recalibration

To build an application with minimum RAM retention, RAMOPT=1 build flag must be
set.

The OTA cluster data is retained during sleep but none of the other ZCL cluster data is
retained.

Before the device goes to sleep, in the presleep callback function, it is required that the
OTA data is copied across from the cluster context structure into the persisted data
structure. This functionality is provided through the
vSetOTAPersistedDatForMinRetention and updated for the dimmer switch application
note.

e.g. For the dimmer switch application

JN518x ZigBee 3.0 SDK
Release Notes

JN-RN-0064 v2042 © NXP Semiconductors 2018 25

 #ifdef DimmerSwitch
 extern tsZLO_DimmerSwitchDevice sSwitch;
 memcpy(&sOTA_PersistedData,

&sSwitch.sCLD_OTA_CustomDataStruct.sOTACallBackMessage.sPersistedData,
 sizeof(tsOTA_PersistedData));

#endif

When the device comes out of sleep and the wakeup callback function is called, it
needs to re-initialise all the data not retained during sleep.

The following needs to be done:

1. All hardware needs to be re-initialised. This is normally implemented through the
APP_vSetUpHardware(); API

2. Base device functionality must be restarted using the BDB_vRestart();

3. Any application data which has not be retained should be initialised. By default all
application data is retained and doesn’t need re-initialising.

4. Following APIs must be called to re-initialise the stack components and buffers

PDUM_vInit();
 ZPS_vExtendedStatusSetCallback(vfExtendedStatusCallBack);

 ZPS_eAplAfReInit();

5. The PDM and power manager should not be re-initialised.

6. All other functions like the ZCL and BDB initialisation should be done as it would be
during a cold start.

7. When using OTA the following needs to be done:

 #if (defined SLEEP_MIN_RETENTION) && (defined CLD_OTA) &&
(defined OTA_CLIENT)
 vZCL_SetUTCTime(U32UTCTimeBeforeSleep+1);
 bInitialiseOTAClusterAndAttributes();
 /*ZCL time data is not retained so , OTA is. This make OTA
think ti's registered while
 * it isn't.
 */
 extern void vOtaTimerClickCallback(
 tsZCL_CallBackEvent *psCallBackEvent);
 if(eZCL_TimerRegister(E_ZCL_TIMER_CLICK_MS, 0,
vOtaTimerClickCallback)!= E_ZCL_SUCCESS)
 {
 DBG_vPrintf(TRACE_SWITCH_TASK, "Failed to register the
timer\n");
 }

 #endif

8. The ZCL needs to be aligned with the amount of time the device has been asleep.

 tsZCL_CallBackEvent sCallBackEvent;

 sCallBackEvent.eEventType = E_ZCL_CBET_TIMER;
 vZCL_EventHandler(&sCallBackEvent);

 JN518x ZigBee 3.0 SDK

Release Notes

26 © NXP Semiconductors 2018 JN-RN-0064 v2042

 #ifdef CLD_OTA
 vRunAppOTAStateMachine(1000);
 #endif

JN518x ZigBee 3.0 SDK
Release Notes

JN-RN-0064 v2042 © NXP Semiconductors 2018 27

4.2.5.5 Selective OTA

The current OTA mechanism relies on transfer and saving of the entire image
(application + stack) in the flash of the JN518x device. This requires the entire flash
to be split up to accommodate two images, the running image and the new upgrade
image.

Often these images are large and hence can take a long time to download. This has
an impact on the power usage of a device. It is desirable to often update only the
stack or just the application. Selective OTA is a NXP specific implementation to
divide a running image into two self-contained parts. These are referred to as APP0
and APP1.

The design decision is to split the image on functional basis. APP0 is the application
image, it consists of application specific code, BDB, ZCL, debug library, Zigbee
common components like ZQueue, ZTimer, beacon filtering, power manager and
peripheral driver code.

APP1 is the stack image, it consists of the ZPSNWK, ZPSAPL, ZPSMAC, MAC,
PDM, PDUM, Radio components, ZPSTSV and random number generator.

For selective OTA APP0 and APP1 can be upgraded independent of each other. The
memory is now split into 4 parts, APP0 active and upgrade image, APP1 active and
upgrade image. The OTA cluster downloads these sequentially, so at any given time
it’s only downloading either APP0 or APP1.

The maximum size for APP0 is 160K bytes and the maximum size for APP1 is 136K
bytes.

APP1 is provided as a prebuilt un-encrypted binary for a routing device and end
device.

There are two variants of APP1 image. There is an end device and routing device
variant.

These can be found under:

C:\NXP\mcux\JN-SW-
4470\middleware\wireless\zigbee3.0\ZigbeeCommon\SelectiveOtaApp1\JN518x_mc
ux\

There are the Release (this is the ZCR build) and ReleaseEndDevice (this is the end
device build) folders.

Selective OTA feature assumes that the images, both application and stack image
would be encrypted. Separate batch files (SelectiveOtaImageGen.bat) are provided
to add specific OTA headers like strings, version number etc. to these. The batch
scripts do not need any update, they assume some default OTA header components
and can be used without change, care should be taken to make sure that the
upgrade image has a higher version number than the current running image. The

 JN518x ZigBee 3.0 SDK

Release Notes

28 © NXP Semiconductors 2018 JN-RN-0064 v2042

batch files use the JET tool to create the programmable images and, also encrypts
the upgraded image.

The default key in the SelectiveOtaImageGen.bat may be set to
0xffffffffffffffffffffffffffffffff so it will not accept any other key apart from the default. This
can be changed by changing the -k 0xffffffffffffffffffffffffffffffff in the batch file and
changing it to -k $8.

WARNING:

The APP0 and APP1 key MUST be kept in sync.

This should not be changed between the application and stack. Both application and
stack must have the same encryption key. Currently this key cannot be changed.
This will be available in subsequent releases.

The Makefiles can call the batch file and pass the OTA header information as follows:

JN518x ZigBee 3.0 SDK
Release Notes

JN-RN-0064 v2042 © NXP Semiconductors 2018 29

4.2.5.5.1 Building the application APP0 image

The Makefile needs to be updated so that it uses the right linker command scirpts for
selective OTA.

To build the APP0 image all references to “AppBuildNone.ld” should be changed to
“AppBuildNone_APP0.ld”. To use the same Makefile to switch between different
builds it would be advisable to do as suggested below.

ifeq ($(SELOTA),APP0)

SETIMAGESIZE = 163840

LNKCMD = AppBuildNone_APP0.ld

else

SETIMAGESIZE = 294912

LNKCMD = AppBuildNone.ld

endif

If it’s implemented as above the following change also needs to be done:

$(TOOLCHAIN_PATH)/$(CC) -Wl,--gc-sections $(LDFLAGS) -T "AppBuildNone.ld" -
T "jn5180_rom.ld"

To:

$(TOOLCHAIN_PATH)/$(CC) -Wl,--gc-sections $(LDFLAGS) -T $(LNKCMD) -T
"jn5180_rom.ld"

When using the selective OTA the maximum application image size needs to be
passed to the signing tool.

This is passed to the signing tool via -s option and needs to be done in addition to the
above change of Makefile

jn518x_image_tool.py -s $(SETIMAGESIZE)

ifeq ($(OS),Windows_NT)

 $(DEV_BLD_DIR)/../OTABuild/LightCreateOtaEncClient.bat
$(DEV_BLD_DIR)/../OTABuild $(JET_BASE) $(MANUFACTURER_CODE)
$(OTA_STRING) $(JET_VERSION) $(JENNIC_CHIP_FAMILY) $(OTA_DEVICE_ID)

ifeq ($(SELOTA),APP0)

 JN518x ZigBee 3.0 SDK

Release Notes

30 © NXP Semiconductors 2018 JN-RN-0064 v2042

 $(NXP_OTA_APP)/SelectiveOtaImageGen.bat $(NXP_OTA_APP)
../../$(JET_BASE) $(NXP_MANUFACTURER_CODE) $(NXP_STRING)
$(JET_VERSION) $(JENNIC_CHIP_FAMILY) $(NXP_STACK_OTA_DEVICE_ID)

endif

else

This should only be done for ifeq ($(OTA_ENCRYPTED),1)

Selective OTA is supported only for encrypted OTA builds.

To build the selective OTA the following options should be added to the build
configuration line

OTA_ENCRYPTED=1 SELOTA=APP0

4.2.5.5.1.1 Code changes in the application to build APP0

Changes to the zcl_options.h file:

The following OTA specific definitions must be provided for OTA cluster

#ifdef APP0

 #define OTA_APP1_ACTIVE_FLASH_OFFSET (uint32)(456 * 1024) /*
320K + 136K Logical location for APP1 active image is present */

 #define OTA_APP1_SHADOW_FLASH_OFFSET (uint32)(320 * 1024) /*
320K Logical location for APP1 upgrade image to be stored*/

 #define OTA_APP1_MAX_SIZE (uint32)(136 * 1024) /* Max size
in bytes must be in multiples of 512 bytes*/

#endif

Changes to app_main.c file:

Include the following headers:

#include "board.h"

#include "fsl_debug_console.h"

#include "app.h"

#include "Selective_OTA.h"

Provide reference to jump table for APP1 as below:

extern uint32 *pu32App1JumpTable;

JN518x ZigBee 3.0 SDK
Release Notes

JN-RN-0064 v2042 © NXP Semiconductors 2018 31

In the void APP_vSetUpHardware(void) function after the BOARD_InitHardware();
add

 /* Look for App1 to run, populating the jump table pointer if found */

 if (E_SOTA_IMAGE_NOT_FOUND != eSOTA_FindImage(&pu32App1JumpTable))

 {

 /* Call reset for App1. This allows App1 to initialise itself */

 vSOTA_ImageReset();

 }

In the app_ota_client.c file , in the PUBLIC void vAppInitOTA(void)

Change following

#if (defined OTA_INTERNAL_STORAGE)

 sNvmDefs.u8FlashDeviceType = E_FL_CHIP_INTERNAL;

#if (defined JENNIC_CHIP_FAMILY_JN516x) || (defined
JENNIC_CHIP_FAMILY_JN517x)

 uint8 u8StartSector[1] = {8};

 u8MaxSectorPerImage = 8 ;

 sNvmDefs.u32SectorSize = 32*1024; /* Sector Size = 32K*/

#else

 /* Each Page on JN518x is 512 bytes , Flash size is 632K. Taking into account
31.5K for PDM (start page 1153) and 24K for customer data

 * usable for image is 576K

 * Split it into 2 sections to support OTA, so 288K becomes Max image size

 * Each 288K section would be 576 pages. This could be represented as 32K
sectors to keep in line with legacy devices.*/

 uint8 u8StartSector[1] = {9}; /* So next image starts at 9*32*1024 = 288K offset*/

 u8MaxSectorPerImage = 9 ; /* 9 *32* 1024 = 288K is the maximum size of the
image */

 sNvmDefs.u32SectorSize = 512; /* Sector Size = 512 bytes*/

#endif

To:

#if (defined OTA_INTERNAL_STORAGE)

 sNvmDefs.u8FlashDeviceType = E_FL_CHIP_INTERNAL;

 JN518x ZigBee 3.0 SDK

Release Notes

32 © NXP Semiconductors 2018 JN-RN-0064 v2042

#if (defined JENNIC_CHIP_FAMILY_JN516x) || (defined
JENNIC_CHIP_FAMILY_JN517x)

 uint8 u8StartSector[1] = {8};

 u8MaxSectorPerImage = 8 ;

 sNvmDefs.u32SectorSize = 32*1024; /* Sector Size = 32K*/

#else

#ifdef APP0

 /* Each Page on JN518x is 512 bytes , Flash size is 632K. Taking into account
31.5K for PDM (start page 1184 - move this by 16

 * to accommodate the customer data) and 8K for customer data

 * usable for image is 592K - APP0 + APP1 APP0 size is max of 160K , APP1 size
is max of 136K.*/

 uint8 u8StartSector[1] = {5}; /* So next image starts at 5*32*1024 = 160K offset*/

 u8MaxSectorPerImage = 5 ; /* 5 *32* 1024 = 160K is the maximum size of the
image */

 sNvmDefs.u32SectorSize = 512; /* Sector Size = 512 bytes*/

#else

 /* Each Page on JN518x is 512 bytes , Flash size is 632K. Taking into account
31.5K for PDM (start page 1153) and 24K for customer data

 * usable for image is 576K

 * Split it into 2 sections to support OTA, so 288K becomes Max image size

 * Each 288K section would be 576 pages. This could be represented as 32K
sectors to keep in line with legacy devices.*/

 uint8 u8StartSector[1] = {9}; /* So next image starts at 9*32*1024 = 288K offset*/

 u8MaxSectorPerImage = 9 ; /* 9 *32* 1024 = 288K is the maximum size of the
image */

 sNvmDefs.u32SectorSize = 512; /* Sector Size = 512 bytes*/

#endif

#endif

In the PUBLIC void vHandleAppOtaClient(tsOTA_CallBackMessage
*psCallBackMessage)

Change:

else {

 /* down load about to start */

 vStartEffect(E_CLD_IDENTIFY_EFFECT_BREATHE);

JN518x ZigBee 3.0 SDK
Release Notes

JN-RN-0064 v2042 © NXP Semiconductors 2018 33

 eOTA_State = OTA_DL_PROGRESS;

 u32OTAQueryTimeinSec = 0;

 u32TimeOut = 0;

 DBG_vPrintf(OTA_LNT, "Accept Image\n");

 }

To:

else {

 /* down load about to start */

 vStartEffect(E_CLD_IDENTIFY_EFFECT_BREATHE);

 eOTA_State = OTA_DL_PROGRESS;

 u32OTAQueryTimeinSec = 0;

 u32TimeOut = 0;

 DBG_vPrintf(OTA_LNT, "Accept Image\n");

 vOTAPersist();

 }

In the PRIVATE uint8 u8VerifyLinkKey(tsOTA_CallBackMessage
*psCallBackMessage)

Change:

#ifdef OTA_INTERNAL_STORAGE

#if (defined JENNIC_CHIP_FAMILY_JN516x) || (defined
JENNIC_CHIP_FAMILY_JN517x)

 u32LnkKeyLocation += psCallBackMessage->u8ImageStartSector[0] *
sNvmDefsStruct.u32SectorSize;

#else

 /* For JN518x a segment has the same definition as a Page in this
implementation

 1 Page = 32 FLASH words = 32 * 16 = 512 Bytes AHI uses 32K sector sizes

 (32*1024)/512 gives a factor of 64 */

 u32LnkKeyLocation += sNvmDefsStruct.u32SectorSize * psCallBackMessage-
>u8ImageStartSector[0] * 64;

#endif

#endif

To:

#ifdef OTA_INTERNAL_STORAGE

 JN518x ZigBee 3.0 SDK

Release Notes

34 © NXP Semiconductors 2018 JN-RN-0064 v2042

#if (defined JENNIC_CHIP_FAMILY_JN516x) || (defined
JENNIC_CHIP_FAMILY_JN517x)

 u32LnkKeyLocation += psCallBackMessage->u8ImageStartSector[0] *
sNvmDefsStruct.u32SectorSize;

#else

#ifdef APP0

 if(psCallBackMessage->sPersistedData.bStackDownloadActive)

 {

 u32LnkKeyLocation += OTA_APP1_SHADOW_FLASH_OFFSET;

 }

 else

#endif

 {

 /* For JN518x a segment has the same definition as a Page in this
implementation

 1 Page = 32 FLASH words = 32 * 16 = 512 Bytes AHI uses 32K sector sizes

 (32*1024)/512 gives a factor of 64 */

 u32LnkKeyLocation += sNvmDefsStruct.u32SectorSize * psCallBackMessage-
>u8ImageStartSector[0] * 64;

 }

#endif

#endif

In the PRIVATE void vManagaeOTAState(void)

Change:

uint8 u8SrcEp = app_u8GetDeviceEndpoint();

To:

uint8 u8SrcEp = app_u8GetDeviceEndpoint();

#ifdef APP0 /* Building with selective OTA */

 static bool_t bGetApp1ImageRequest = FALSE;

#endif

Change:

if(u32OTAQueryTimeinSec > OTA_IMAGE_QUERY_TIME_IN_SEC)

 {

 if(sZllState.bValid)

JN518x ZigBee 3.0 SDK
Release Notes

JN-RN-0064 v2042 © NXP Semiconductors 2018 35

 {

 tsOTA_ImageHeader sOTAHeader;

To:

if(u32OTAQueryTimeinSec > OTA_IMAGE_QUERY_TIME_IN_SEC)

 {

 if(sZllState.bValid)

 {

 tsOTA_ImageHeader sOTAHeader;

#ifdef APP0 /* Building with selective OTA */

 if(bGetApp1ImageRequest)

 {

 bGetApp1ImageRequest = FALSE;

 vOTA_SetApp1OtaEnable(sZllState.u8OTAserverEP, TRUE);

 }

 else

 {

 bGetApp1ImageRequest = TRUE;

 vOTA_SetApp1OtaEnable(sZllState.u8OTAserverEP, FALSE);

 }

#endif

All references to PDM_eInitialise(1152, 63, NULL);

Should be changed to PDM_eInitialise(1184, 63, NULL);

The persistent data must be fully erased when using selective OTA image for the first
time.

Once the OTA enabled image is built it should be programmed as normal using the
flash programmer

./JN518xProgrammer.exe -V 2 -P 115200 -s COM56 -e FLASH -p ”C:\<image>”

There are two images available for APP1 depending on the build type.
These images are created when the application note is built. They can also be
created by calling the batch file directly with the appropriate parameters.

$1 : Path of files.
$2 : Jet Base dir

 JN518x ZigBee 3.0 SDK

Release Notes

36 © NXP Semiconductors 2018 JN-RN-0064 v2042

$3 : the manufacturer code
$4 : 32 byte OTA header stack string
$5 : JET VERSION 6 JN518x
$6 : Jennic chip family like JN518x
$7 : NXP OTA Device Id
$8 : NXP encryption key

e.g.
Assuming the strings have been defined beforehand in the Makefile and the batch file
has been updated to change the -k 0xffffffffffffffffffffffffffffffff to -k $8 then:

SelectiveOtaImageGen.bat $(NXP_OTA_APP) $(JET_BASE)
$(NXP_MANUFACTURER_CODE) $(NXP_STRING) $(JET_VERSION)
$(JENNIC_CHIP_FAMILY) $(NXP_STACK_OTA_DEVICE_ID)
$(ENCRYPTION_KEY)

If the SelectiveOtaImageGen.bat has not been updated to accept a different key to
what’s hardcoded then the $(ENCRYPTION_KEY) shall be omitted.

If building for a routing device look at the location
C:\NXP\mcux\JN-SW-
4470\middleware\wireless\zigbee3.0\ZigbeeCommon\SelectiveOtaApp1\JN518x_mc
ux\Release

 The file ZpsSelectiveOtaApp1.bin should be programmed.

 If building for an end device look at the location

C:\NXP\mcux\JN-SW-
4470\middleware\wireless\zigbee3.0\ZigbeeCommon\SelectiveOtaApp1\JN518x_mcux
\ReleaseEndDevice

 The file ZpsSelectiveOtaApp1_ZED.bin should be programmed.

The production flash programmer can be used to program this image with the
following option:

 ./JN518xProgrammer.exe -V 2 -P 115200 -s COM56 -p FLASH@0x50000=”
C:\NXP\mcux\JN-SW-
4470\middleware\wireless\zigbee3.0\ZigbeeCommon\SelectiveOtaApp1\JN518x_mc
ux\Release\ ZpsSelectiveOtaApp1.bin”

Care must be taken when programming the APP0 and APP1. If APP0 is programmed
with the erase flash option, it will also remove any previously programmed APP1. So,
it will require reprogramming the APP1.

The encrypted image which can then be hosted on an OTA server has the .ota
extension at the location of APP1.

4.3 Changes from v1811 release

The following issues have been fixed in this release:

JN518x ZigBee 3.0 SDK
Release Notes

JN-RN-0064 v2042 © NXP Semiconductors 2018 37

Internal ID Description

artf630276 Stack doesn’t give the ZDP callback on received ZDP requests.

artf625125 PWRM has been updated to use the BOD wakeup and an
interrupt protection guard is put for the increment and
decrement of activity counter.

MCUZIGBEE-1618 Suppress BDB rejoin when restarting to improve startup time

MCUZIGBEE-1616 ZigBee initialisation to remove MLME-Reset.Req after MAC

initialisation

MCUZIGBEE-1431 Allow MAC buffers to be OFF in sleep mode with/without RAM

held

MCUZIGBEE-1553 Update coverity_scan script to use repo scripts

MCUZIGBEE-483 Add califro32k.bin

KPSDK-21266 Remove POWER_SLEEP mode

MCUZIGBEE-483 Fix calibraterfo32k generator -r issue

MCUZIGBEE-483 update frequency type from uint32 to uint64

add demo calibratefro32k to show fro32k calibration using 32m
clock

add new api to support reverse target and reference clock

MCUZIGBEE-1630 Minimize the delay time in ADC_Configuration function

MCUZIGBEE-1553 Update coverity APP_NOTES script

KPSDK-21267 Include pin_mux.h to fix build warning

KPSDK-21293 Add get INISTAT register driver api.

MCUZIGBEE-1553 Add NFC coverity scan

MCUZIGBEE-1446 sync for fro1m trim update

MCUZIGBEE-1609

GPP Functionality Attribute doesn't have the right bitmap

artf571504 NXP ZCL code has not implemented transitiontime parameter
as part of Recall Scene command

MCUZIGBEE-1610 GP frame counter is wrong

MCUZIGBEE-1611

GP doesn't handle reserved and manufacturer specific
commands

MCUZIGBEE-1612 Zigbee stack doesn't default back to not using install codes

MCUZIGBEE-1607 do not switch off APB bridge clock when disabling the
Temperature sensor

MCUZIGBEE-1613 TSV timer context structures don’t get initialised

 JN518x ZigBee 3.0 SDK

Release Notes

38 © NXP Semiconductors 2018 JN-RN-0064 v2042

MCUZIGBEE-1234 Clock divider glitch safe procedure
1.update the api named CLOCK_SetClkDiv in
devices\JN5180\fsl_clock.c

MCUZIGBEE-1587 ADC SDK driver improvements/bugs follow-up

MCUZIGBEE-1587 [ADC] Data output not shifted when resolution below 12 bits

JN518x ZigBee 3.0 SDK
Release Notes

JN-RN-0064 v2042 © NXP Semiconductors 2018 39

4.4 Known Issues

None.

5. Related Documentation
The following user documentation supports this software release:

• ZigBee 3.0 Stack User Guide [JN-UG-3113]

• ZigBee 3.0 Devices User Guide [JN-UG-3114]

• ZigBee Cluster Library (for ZigBee 3.0) User Guide [JN-UG-3115]

• ZigBee Green Power (for ZigBee 3.0) User Guide [JN-UG-3119]

• JN51xx Core Utilities User Guide [JN-UG-3116]

• JN51xx Production Flash Programmer User Guide [JN-UG-3099]

• JN518x SDK API Reference Manual (replacing the JN51xx Integrated
Peripheral User Guide) [MCUXSDKJN518xAPIRM]

All the above manuals are available on request from the NXP Applications Team.

 JN518x ZigBee 3.0 SDK

Release Notes

40 © NXP Semiconductors 2018 JN-RN-0064 v2042

