8/2 在线研讨会: 意法半导体高性能 GaN 快充产品解决方案 在线QA

序号	提问内容	回复内容
1	建议65W PD使用GaN 90Vac/20V/65W建议系统频率设计在多少? QR or ACF 架构	工作频率取决于这个65W变换器体积的要求,目前一般的设计频率在300Khz左 右,可以参考ST的参考方案EVLONE65W或者STDES-65ACFADP
2	ITSINI SAME OF THE CHICANITION ?	UFCS协议由于刚刚正式发布,目前还没有支持的产品。ST-One是数字控制器,可以通过修改副边的软件来支持各种的协议,我们会研究其度UFCS支持的兼容性。
3	目前快充最高可到多少W?	USB PD3.1 EPR最大功率扩展到了48V/5A,也就是240W
4	ST-one在客户产线不良率能做到多少PPI?	我手上没有你需要的资料,按照ST其他产品出厂不良率:低于0.3PPM;
5	ST的协议能做UFCS吗?	UFCS协议,可以通过后面软体修改实现,谢谢!
6	是否有支援UFCS的solution	ST-One是数字控制芯片,可以通过副边软件的修改来支持不同的协议,包括UFCS

7	是否有支援UFCS的solution	暂时还不支持有UFCS统一协议,后续会增加此部分
8	开关频率变高,是否会带来其他问题呢?	会的,散热,EMI问题
9	高性能快充中通常使用哪些电路拓扑,能满足宽范围多路输出的需求?	QR,AHB,ACF等,具体看功率
10	VIPERGAN 产品是否可以针对 Turn-on & Turn-off速度做调整?	VIPERGAN50的GaN的驱动电路是内置的,所以其turn on/off速率是不能从外面调整的。
11	100W PD的散热有解决方案吗?	100W USB PD3.0的方案中适用ST-ONE加MasterGaN的方案不需要额外增加散热片就可以满足热的要求
12	STone可否用来直接驱动一般discrete的单体GaN元件?如 SGT120R65AL	ST-One驱动其他的GAN或者SI MOSFET是需要增加驱动电路或者驱动IC的
13	ViperGAN50是指只支持50W吗?	是,50W-; 100W 有VIPERGAN75, 23Y 提供样品, M/P 在24Y; 望悉!
14	有DC DC 60W solution ?	MAIL 联系。 DC-DC 芯片,ST没有合适产品。需要flybacK来实现。 Mail: Tiger_wang@cn.yosungroup.com
15	若是连续的话,储蓄多久会触发OVP?	连续触发OVP,还是需要相应的时间,才能保护

16	过压保护OVP,侦测四次突波会触发	是四次触发
17	GaN solution 在thermal 上有比较好吗?	可以实现高频,减少体积。
18	听很多播主说目前手机最高是200W的快充,请问未来会突破这个功率吗?会不会功率太大安全性就大大降低了?	无线功率国家有标准限制,有线充电达到200W以上,要考虑多方面因素呀。成本,发热等
19	ST意法半导体高性能GaN快充产品解决方案,最大功率支持到多大?	目前我们充电器方案有45W/65W/120W等,后续也会针对USB PD3.1 EPR推出140W 及240W的方案
20	ST意法半导体高性能GaN快充产品解决方案,包括哪些组成部分?	ST基于GAN的解决方案包括原边电路控制,副边SR控制及端口USB PD协议控制。
21	ST意法半导体高性能GaN快充产品解决方案,目前有哪些实际应用案例?	你问的是否有哪些实例?目前作为ST代理YOSUN,华东地区有博兰德,英飞特,都有批量订单,出货。
22	针对100w+的PD电源有什么好的方案?	如果你研发100W 左右的PD POWER; 建议你使用ST推荐PFC+ACF, Solution.
23	可以支援到 PD 3.1 48V / 5A 吗? 还要搭配其他 Chip 吗?	ST one暂时不支持 PD3.1,后面应该会出支持PD3.1的产品
24	ST意法半导体高性能GaN快充产品解决方案,是否适用于汽车行业?	暂时还没有符合车载的GAN产品,后面会做这块,谢谢!

25	有线快充与无线快充整合在一起,是否会影响内部零件的寿命?	具体要看内部器件温升限额。
26	请问刚刚介绍65W PD 效率是否有90V 100% 的效率?	100%效率没有哦。
27	是否会出支援PD3.1方案吗?	会的,我们会持续推出USB PD包括USB PD3.1 140W,240W的方案。如果您有具体的需要,可以联系我们进行支持。
28	成本上比普通的反激贵多少?	价格的话具体要问代理商,比普通反激贵30%要的
29	为何用传统的变压器效率反而比较好?	平面变压器由于其扁平化的设计Ae在类似尺寸下会相对传统的绕线式变压器要低,所以其效率会比传统绕线变压器略低。其好处式PCB绕线生产比较方便,一致性好,可以工作在更高的频率,功率密度更高。
30	ST ONE目前包装大小是多少?	这个可问住我了,按照ST SO 封装一般情况。一个包应该有2500PCS; 如果一定要确认数,会后MAIL to me, 与ST确认后在准确答复。 我的MAIL: Tiger_Wang@CN.YOSUNGROUP.COM
31	ST-one开发板能申请吗	可以,后续MAIL联系: Tiger_wang@CN.YOSUNGROUP.COM;谢!
32	有在照明行业应用案例?	目前主要是PD领域,后面慢慢会做工业类,LED类别暂时没有
33	请问目前最大可以做到几瓦?	VIPer50,最大全电压范围是50W;未来是VIPER GAN100,是全电压100W

34	CCM模式下也能zvs和zcs吗?	在CCM PFC里ZVS和ZCS不能同时实现
35	1 	https://www.st.com/en/power-management/st-one.html GAN MOS已内置驱动了
36	方案需要FW吗?	VIPERGAN50不需要软件;ST-One是数字控制芯片,内部配置了基本的工作软件, 还可以通过GUI来调整参数
37	电池的充放电有次数与它的寿命有关吗?大约多少的充放电次数呢?	电池寿命跟其充放电次数相关的,具体寿命需要根据使用的电池规格来看。
38	ST-ONE支持2C output吗? 支持PPS ?	ST-One 支持PPS,支持1C输出。如果要设计2C输出,需要增加一个USB PD控制芯片
39	1944年 1948年 -	在电池规格要求范围内的快充不会对电池使用产生影响,所以大家看到越来越多的快充产品得到应用
40	电池一般在多少%下充电,对电池的寿命比较好呢?	锂电有记忆功能,第1次应该使用完所有的电量。后续电池最好不能低于10%就需要充电。否则会损坏载流子,影响电池寿命。
41	驱动频率如何调整?	VIPERGAN50 通过TB PIN调整开关频率,谢谢!
42	有100V左右的淡化镓吗	目前处于设计阶段,预计23年可以MP

43	ST的方案是有PFC的IC以及GaN的MOSFET这样理解对吗?	VIPERGAN50是反激,内置GAN MOS ST-ONE是ACF拓扑,用于充电器
44	GaN对驱动信号的上升下降沿有要求吗?	GaN的开关特性与Si的开关是一致的,只是其寄生电容更小,所以可以支持更高的开关速率
45	这个快充能耗损失是多少? 比常规的其他芯片优势在哪?	ST-One的优势在于高集成度,其集成了原边控制,副边SR控制,输出开关MOSFET控制及USB PD控制等;VIPERGAN50在非常小的体积下集成了原边QR Flybakc的控制及GaN管,可以让开发人员很简便的使用到GaN
46	350KHz EMI有对策吗?	开关频率提高比较容易产生EMI的问题,一般可以通过优化前级EMI滤波器,增加差模电感,增加变压器内部的屏蔽等加以抑制。
47	GaN快充产品可以用于普通手机的充电吗?	可以。
48	VIPERGAN50; ST-ONE参考电路哪里能够下载	ST-ONE https://www.st.com/en/power-management/st-one.html VIPERGAN50 https://www.st.com/en/power-management/vipergan50.html
49	有一说法,快充会损害手机电池,会减损电池的寿命,想请问这句话是对的吗?	不完全对,快充确实会伤害电池,但是随着PD的发展,电池的工艺以及材料也在不断的优化,这部分的伤害会越来越小,谢谢!
50	目前可以支援什么样的接口?	ST-ONE 可以支持A与C口,他集成了协议芯片

51	ViperGAN50是指只支持50W吗?	目前DEMO是100W
52	氮化镓充电器如何保证散热?	氮化镓充电器散热主要考虑氮化镓功率管的散热,MasterGaN及VIPERGAN50在设计时候可以根据我们的设计指引合理实际PCB来散热,不需要额外增加散热片
53	VIPERGAN50; ST-ONE都能够提供多大功率	VIPERGAN50支持最大50W的输出;ST-One作为ACF的控制器,其输出功率收到ACF 拓扑本身及功率管的限制。
54	GaN开关最高频率可以到多少?	由于GaN的Qg及寄生电容很小,其支持的开关频率可以达到MHZ级别
55	驱动电路的建议?	VIPERGAN50及MasterGaN都内置了驱动电路,所以不需要外加驱动电路。ST-One 驱动其他功率管需要增加驱动电路或者驱动IC
56	使用内部RC振荡器,精度如何?	一般RC振荡器的频率精度约在5%,使用晶振的频率精度在ppm,两者差异约在 10000倍的精度差异。

更多技术研讨会欢迎持续关注"大大通"(https://www.wpgdadatong.com),欢迎各位合作伙伴&客户朋友关注"大大通"微信公众号,了解更多完整技术方案,同时加入微信群同我们有更深入的技术探讨。

大大通 微信公众号

大大通研讨会技术群