7/14 在线研讨会: 充电3分钟听歌2小时, 微源超高效率TWS快充解决方案 在线QA

序号	提问内容	回复内容		
1	这个Demo板子是几层板	两层		
2	该方案的双向通讯 UART 波特率是多少	1.5Mbps		
3	LP7810 是否可以做充电电流 NTC 温度智能调节?	可以在软件上实现,通过读取 LP7810 寄存器,读取当前 NTC 温度范围值,再调整充电电流		
4	你们方案通讯协议有哪些?可以上报充电仓电量么?	通讯协议支持充电仓跟耳机交换电量信息		
5	LP7810 + LP4080 idel时候的底电流有多少?	单芯片端是 4uA		
6	LP7810 跟外部主控的通信接口是I2C? 波特率最高速度是多少?	是的,是 IIC 协议通讯的,支持目前常用的到的波特率		
7	TWS含括有線與無線嗎?	目前该项目是支持通过 Pogo pin 进行有线充电,无线充电暂不支持		
8	这个快充发热严重吗	超低压差充电,快充效率超高,基本可以忽悠温升。		
9	有没有过充保护	过充保护指的电池端的嘛,电池过充是锂电保护去做的,LP7810支持输入过压保护, NTC保护。		
10	相比其他的快充,主要优势是什么	无需外部双向通讯即可实现电压跟随,可省MCU资源。		

11	听歌2小时是不是有点忽悠啊,听歌感觉不需要很 耗电	听歌一般功耗在5mA,LP78101+LP4080充电电流250mA时可以在3分钟中充电 12.5mAh,所以是能够支持2小时听歌的。			
12	微源电源芯片涵盖哪些应用场景?	充电 升压 降压 LDO 过压/过流保护 PMIC 背光 MOS 功放			
13	include fuel gauge function?	目前暂不支持电量计功能			
14	电压跟随如何保证零延时?	纯硬件方式实现电压跟随,是不需要通过通讯,所以能够保证实时的跟随。			
15	电压跟随是由mcu控制的吗	LP7810+LP4080的时候是不需要MCU控制做,套片是纯硬件实现电压跟随。			
16	电流抖动较大时,充电稳定性如何?	电流抖动是指那块,LP7810和LP4080充电都是稳定充电的。 后续有技术交流,可以咨询我们。shelly.xie@wpi-group.com			
17	这个快冲方案的散热性如何	耳机低压差充电,充电效率超高,温升很低的。			
18	充电仓方案可以检测哪些输入信号?	可以检测的输入信号包括:USB接入信号、仓电池充满信号、NTC数据、霍尔开关信号、按键信号、电池电量数据及耳机充电电流ADC数据			
19	LP7810 功耗如何?	LP7810 待机功耗4uA			
20	整组方案PCB 面积能控制在多少?	您好!PCB 面积可以联系以下邮箱:shelly.xie@wpi-group.com			
21	对电池的续航时间有多大改进?	相对传统TWS方案仓的电池续航提升20%。			
22	状态灯可以指示哪些状态?	可以指示充电仓电量			
23	如果加高電壓.,是否可以再減少充電時間	这里快充的时间主要还是受到充电电流的影响			

24	LP7810支持哪些保护	OVP、NTC			
25	LP7810 支持哪些中断事件?	检测耳机入仓、耳机充电结束、输入电压变化、充电状态、NTC 过温等			
26	测温是用什么实现的?	测温是指NTC检测嘛,NTC功能 LP7810是芯片自带的,通过外部NTC电阻,充放电NTC均能够支持保护,且温度可调节。			
27	动态电压跟随是怎么测试的?	可以通过多通道示波器抓充电过程中的电压变化			
28	LP4080 是否可以过 12 KV,15KV ESD	12KV/15KV ESD 是系统级ESD, 和TVS管的选用以及PCB 布局都有关系,需要系统验证 。芯片已经做到最高等级HBM(器件级别ESD) 8kV			
29	LP7810 + LP4080 怎么样实现电压跟随	1. 在CC快充阶段,LP7810 是一个低压差恒流源,LP4080 是一个导通电阻Rdson,pogo 针上电压等于电池电压+Irdrop。 Pogo针上电压实时跟随电池电压 2. 在预充和恒压浮充阶段,LP7810 是一个导通电阻Rdson,pogo针的电压等于boost 输出电压-Irdrop。 Boost 输出电压设计时需要设计成比浮充电压高200mV。Boost 输出电压与电池电压保证一个200mV的低压差			
30	LP7810和 LP4080 是套片么? LP7810 或 LP4080 可以单独使用么?	LP7810 和 LP4080 是可以单独使用的,可以看到 WPI 做的方案就是单独使用 LP7810 去做充电仓充放电功能,并且其充放电电压电流可配。如使用 LP7810 搭配 LP4080 则可以支持实时电压跟随,从而支持3C/5C 充电电流			
31	NTC 包含多少温度档,其阈值是否可以调整?	NTC 包含5档温度,符合JIETA标准,分布时-10C/0C/10C/45C/60C,可以调整,但是只能夸大NTC 温度范围,无法缩窄,即可以从0-45C 扩大到-2C 到47C ,但是无法缩窄到2C-43C。如果想收窄,可以使用BETA3950 热敏电阻			
1 2 1	充电仓可以检测自身电池电量么?通过什么方式 ?精度是多少?	当电池接到 LP7810 BAT PIN 脚,通过 LP7810 内部的寄存器可以读取到对应的电压值, 范围在 2.9 V~4.4 V,精度 0.1 V			
33	LP7810的 LDO 的供电能力如何?	如果需要支持左右耳同时进行1Mbps以上高速通信, 外供能力15mA。 不双向通信 时,外供能力25mA			

34	NTC 包含多少温度档,其阈值是否可以调整	LP7810 最大可以支持 115200,目前方案上使用的是 9600			
35	LP7820什么时候出来	目前 LP7820 已经出来了,如果有需要的话,可以联系 Shelly.Xie@wpi-group.com			
36	如果电池接口接触不良,芯片是否可以检测到?	是可以检测到电池是否存在。			
37	LP4080 可以支持仓储/船运模式吗?	LP4080有独立GPIO控制,可以去搭配LPB1010去做船运功能。			
38	LP7810 在开发前期会提供计算书算参数吗?	LP7810在开发期间可以提供DEMO,样品,技术文档及技术支持。			
39	普通充电功率多大? 快充功率多大呢?	耳机端常规功率在50mA*Vbat左右,微源快充方案是支持250mA*Vbat。			
40	什么快充协议?	耳机端的电压跟随,LP7810和LP4080套件是支持快充的,内部有1-wire私有协议。			
41	此快充方案是否會傷電池?	需要电池支持快充才可以。			
42	对于过放的电池, 电压跟随充电能支持吗?	耳机电池需要充到CC阶段才会进入电压跟随。			

更多技术研讨会欢迎持续关注"大大通"(https://www.wpgdadatong.com),欢迎各位合作伙伴&客户朋友关注"大大通"微信公众号,了解更多完整技术方案,同时加入微信群同我们有更深入的技术探讨。

大大通 微信公众号

大大通研讨会技术群