

Datasheet

DS001051

AS7050

Analog Frontend for Vital Sign Monitoring

v1-00 • 2022-Mar-31

Content Guide

1	General Description	3
1.1 1.2 1.3	Key Benefits & Features Applications Block Diagram	4
2	Ordering Information	6
3	Absolute Maximum Ratings	7
4	Electrical Characteristics	9
5	Package Drawings & Markings '	15
6	Tape & Reel Information	16

7	Soldering & Storage Information	17
8	Revision Information	18
9	Legal Information	19

1 General Description

The AS7050 Biosignal Sensor Analog Frontend is the next generation Vital Sign Sensor. It enables the user to detect biosignals such as photoplethysmogram (PPG), electrocardiogram (ECG) and galvanic skin resistance (GSR). PPG is the most used HRM method. It measures the pulse rate by sampling light modulated by the blood vessels, which expand and contract as blood pulses through them. ECG is the reference for any measurement of the biopotential generated by the heart.

Compared to the previous ams OSRAM biosignal sensor generation, AS7050 is a biosignal converting unit. The AS7050 provides up to 8 LED driver outputs, samples up to 6 photodiode inputs and supports external electrodes. This enables the highest flexibility for several LED and photodiode arrangements in different applications. Furthermore, the AS7050 Biosignal Sensor Analog Frontend provides 2 ADC channels for simultaneous PPG and ECG measurements and an automatic photodiode offset control.

The embedded ECG analog front-end satisfies IEC 60601-2-47 requirements.

The AS7050's low-power design and small form factor are particularly well suited to application in fitness bands, smartwatches, sports watches, smart patches and earbuds. In these cases, board space is limited, and users look for extended, multi-day intervals between battery recharges. Thin package dimension makes the AS7050 suitable for height constrained solutions like earbuds.

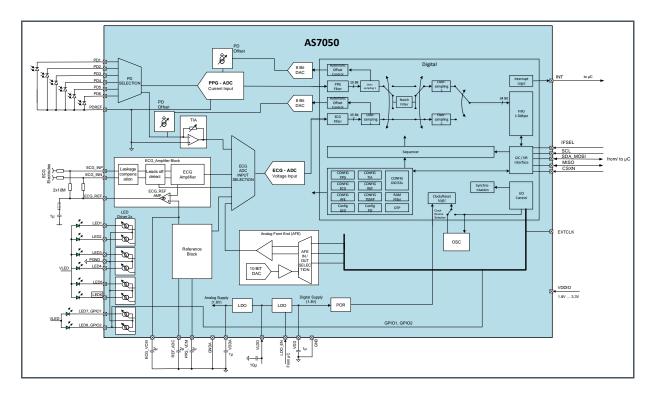
1.1 Key Benefits & Features

The benefits and features of AS7050, Analog Frontend for Vital Sign Monitoring are listed below:

Figure 1: Added Value of Using AS7050

Benefits	Features
High flexible LED/photodiode configuration.	Up to 8 LED drivers and 6 photodiode input pins.
Allows smallest application size e.g. narrow HRM measurement band.	Small Wafer-Level-Chip-Scale-Package (WLCSP).
Electrocardiogram ECG with dry electrodes.	Embedded low noise analog front-end for ECG signals acquisition.
Enables blood pressure measurements.	Synchronized PPG and ECG acquisition.
Good HRM measurement quality.	Low noise analog front-end for PPG acquisition
Additional information for end user.	Analog electrical front-end (e.g. for temperature sensing using a NTC or galvanic skin resistivity (GSR)).
Long operating time.	Hardware sequencer to offload processor. Adjustable LED driver with current control.
Ready for blood oxygen measurement	2 PPG channels useable in simultaneous mode available
Acquiring several bio signals in parallel	ECG and PPG channels separated and simultaneous useable

1.2 Applications


- Optical sensor platform
- Fitness band
- Smart watch
- Smart patches
- Heart rate monitor
- Hearables
- ECG monitoring
- Cuff-less blood pressure measurements

1.3 Block Diagram

The functional blocks of this device are shown below:

Figure 2 : Functional Blocks of AS7050

2 Ordering Information

Ordering Code	Package	Marking	Delivery Form	Delivery Quantity
AS7050-BWLM	WLCSP	n.a.	Tape & Reel	500 pcs/reel
AS7050-BWLT	WLCSP	n.a.	Tape & Reel	10000 pcs/reel

3 Absolute Maximum Ratings

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only. Functional operation of the device at these or any other conditions beyond those indicated under "Operating Conditions" is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Figure 3: Electrical Characteristics of AS7050

Symbol	Parameter	Min	Max	Unit	Comments
Electrical Para	meters				
V_{DD}	Digital Supply Voltage		1.98	V	
V_{DDA}	Analog Supply Voltage		1.98	V	
V_{DDIO}	IO Supply Voltage		6	V	
V _{IN}	Input Pin Voltage to Ground pins GPIO1/2	-0.3	V _{DDIO} +0.3 V max. 6 V	V	Internal diode to V _{DDIO}
V _{IN-OTHER}	Input Pin Voltage to Ground pins SCL/SDA_MOSI/MISO/CSXN/IN T/EXTCLK	-0.3	V _{DDIO} +0.3 V max. 6 V	V	internal diode to V _{DDIO}
V_{LDO_EN}	Input Pin Voltage to Ground pins LDO_EN	-0.3	V _{LDO} +0.3 V max. 6 V	V	internal diode to V _{LDO}
V _{VD1/2/3/4/5/6}	Voltage at Pins VD1,VD2,VD3,VD4,VD5,VD6		6	V	
Vvd7/8_ Internal	Voltage Between Internal Pin of VD7-VD8 to GND		V _{DDIO} +0.3 V	V	Internal diode between current source (internal node at anode of the LED if the pin has an LED otherwise VD7/8 pin) and V _{DDIO}
V _{IN-LDO1}	Input Pin Voltage to Ground for pin V_LDO	-0.3	6	V	EN_LDO > 1.3 V
V _{IN-LDO2}	Input Pin Voltage to Ground for pin V_LDO	-0.3	VDD+0.3 V max. 2 V	V	$EN_LDO = 0 V$ Diode to V_{DD} and V_{DDA}
V _{IN-VDDA_DIODE}	Input Pin Voltage to Ground pins for ECG_INP/ECG_INN/ECG_REF/ ECG_VCM/PPG_VCM/REF_AD C/PD1/PD2/PD3/PD4/PD5/PD6/ PDREF	-0.3	V _{DDA} +0.3 V max. 2 V	V	Diode to V _{DDA}
V _{GNDA-PGND}	Analog to Power Ground Voltage Difference		±0.3	V	
$V_{\sf GNDA\text{-}GND}$	Analog to Digital Ground Voltage Difference	±0.3		V	
I _{SCR}	Input Current (latch-up immunity)	±100		mA	JEDEC JESD78 Connect specified capacitor on SIGREF and V_LDO during latch-up test.
I _{LEDON}	Average LED ON Current		35	mA	DC current with all LEDs ON during all 8 time slots ⁽²⁾

Symbol	Parameter	Min	Max	Unit	Comments				
Electrostatic	Electrostatic Discharge								
ESD _{HBM}	Electrostatic Discharge HBM		±2.0	kV	JS-001-2017				
Temperature	Ranges and Storage Conditions								
T _{STRG}	Storage Temperature Range	-40	125	°C					
T _{AMB}	Operating Free-air Temperature	-30	85	°C					
T _{BODY}	Package Body Temperature		260	°C	IPC/JEDEC J-STD-020 ⁽¹⁾				
RH _{NC}	Relative Humidity (non- condensing)	5	85	%					
MSL	Moisture Sensitivity Level		1		Maximum floor life time unlimited @ 30°C/85% RH _{max}				

- (1) The reflow peak soldering temperature (body temperature) is specified according to IPC/JEDEC J-STD-020 "Moisture/Reflow Sensitivity Classification for Non-hermetic Solid State Surface Mount Devices."
- The minimal time slot time is $125 \, \mu s$. It defines the time when you can start next sub-sample conversion. $8 \, sub$ -samples (2) forming one sample. Within one sample you can chose any combination of LED and PD (e.g. sub-sample 1: LED1 and PD 3, subsample 2: LED3 and PD2). Also if one subsample is completed in 32 μs you cannot start the next subsample immediately, you need to wait the beginning of new time slot (which is 125 µs after beginning of sub-sample start).

4 Electrical Characteristics

All limits are guaranteed. The parameters with Min and Max values are guaranteed with production tests or SQC (Statistical Quality Control) methods.

Figure 4: Electrical Characteristics of AS7050

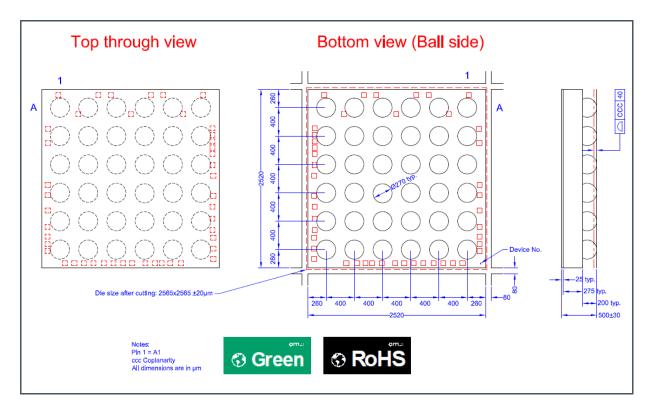
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{DD}	Supply voltage		1.7	1.8	1.98	V
V_{DDA}	Analog positive supply voltage		1.7	1.8	1.98	V
V_{DDIO}			V_{DD}	3.3	6	V
	Supply current in power down mode	LDO_EN=0V, VLDO = VDDA				μΑ
	Supply current in idle mode	lf_osc_on=1		0.07		μΑ
I _{DDA}	Supply current PPG ADC active	en_bg=1, en_vcm_ppg=1, en_bias=1, sel_opamp=0, ppg_en=1, ppg_mod_en=1, pll_on=1, hf_osc_on=1		9.55		mA
	Supply current ECG ADC active	en_bg=1, en_vcm_ecg=1, en_ref=1, en_bias=1, sel_opamp=0, ecg_en=1, ecg_mod_en=1, ecg_ibuf_en=1, pll_on=1, hf_osc_on=1		5.55		mA
	Supply current ECG Amplifier active	ecg_amp_en=1, ecg_ina1_en=1, ecg_ref_enable=1, ecg_ina2_en=1		0.26		mA

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
	Supply current TIA active	tia_en = 1		1.39		mA
	Supply current AFE active	afe_dac_en = 1, afe_dac_buf_en=1, afe_gain_stage_en=1, afe_ref_buf_en=1		114.7		μΑ
	Supply current in power down mode	LDO_EN=0V, VLDO = VDDA		1.1		μΑ
	Supply current in idle mode	lf_osc_on=1		2.92		μΑ
Ivdd	Supply current PPG ADC active	en_bg=1, en_vcm_ppg=1, en_bias=1, sel_opamp=0, ppg_en=1, ppg_mod_en=1, pll_on=1, hf_osc_on=1		0.80		mA
	Supply current ECG ADC active	en_bg=1, en_vcm_ecg=1, en_ref=1, en_bias=1, sel_opamp=0, ecg_en=1, ecg_mod_en=1, ecg_ibuf_en=1, pll_on=1, hf_osc_on=1		0.80		mA
Ivddio	Supply current in power down mode	LDO_EN=0V, VLDO = VDDA		0.14		μA
fextclk	External clock frequency		2		4	MHz
fSampling,ECG	Sampling frequency				8	kHz
f _{Sampling,PPG}	Sampling frequency				1	kHz
Photodiode						
	DAC offset	ppg_ios_fs=0		1		μΑ
los	current full	ppg_ios_fs=1		2		
	scale range	ppg_ios_fs=2		4		

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
		ppg_ios_fs=3		8		
		ppg_ios_fs=4		16		
		ppg_ios_fs=5		32		
		ppg_ios_fs=6		64		
		ppg_ios_fs=7		128		
$C_{\mathtt{PD}}$	Total photodiode capacitance connected to PPG_ADC	0 V reserve voltage		60	300	pF
lpd	Photo current input	RTIA (TIA gain) values 9.375 kΩ- 1.2 MΩ; (∑ signal range 1 μA- 64 μA)	0		64	μΑ
ECG						
V _{IN_SIG}	Input signal ECG	Max ECG input signal according to IEC 60601-2-47, chapter 201.12.4.4.101	-10		10	mV
Vin_dc_off	Input DC offset	Max ECG DC Offset voltage according to IEC60601-2-47, chapter 201.12.4.4.101	-300		300	mV
V _{Noise, p-v}	Input-related peak to valley noise	Measured at the output of ECG amplifier in the frequency range of f _{IN} according to IEC 60601-2-47, chapter 201.12.4.4.106			50	μV
R _{IN}	Input Impedance	According to IEC 60601-2-47, chapter 201.12.4.4.102		100		МΩ
Vecg_ref	ECG_REF voltage	ecg_ref_enable = 1		0.8		V
VECG_ref_in	ECG Ref Input voltage	Input from reference block		0.8		V
ECG-MODE DSN	/ Interface					
ECG_CR	ECG conversion rate	19-bit resolution		8		kSps
ECG_P_TOTAL	Power consumption			5		mA

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
ECG_RES	ECG Resolution		19			bits
ECG_ENOB	ENOB			17		bits
Vecgadc_refp	Positive reference voltage			1.6		V
LED Driver						
V _{LED}	LED pad voltage				5	V
LED Driver 1-6						
	Allowed	led_ictrl = 127		150.00		mA
ILED	operating LED output current	led_ictrl = 255		300.00		mA
V-	Compliance	led_ictrl = 0 127			0.3	V
VCompl_1	voltage	led_ictrl = 128 255			0.85	V
LED Driver 7-8						
ILED	Allowed operating LED output current	led_ictrl = 128		50.00		mA
VCompl_1	Compliance voltage	led_ictrl = 0 127			0.3	V
Reference Bloc	k					
VECG_VCM	Reference voltage	SEL_REF=0, at T=27 °C		8.0		V
VREF_ADC	Reference voltage	Trimmed reference voltage, SEL_REF=0, at T=27 °C		1.6		V
VPPG_VCM	Reference voltage	SEL_REF=0, at T=27 °C		0.8		V
TSEN_OUT	Temperature sensor output voltage	At room temperature		636		mV
TSEN_TK	Temperature sensor temperature coefficient of the output voltage	-40 °C to 105 °C		-2.03		mV/°C

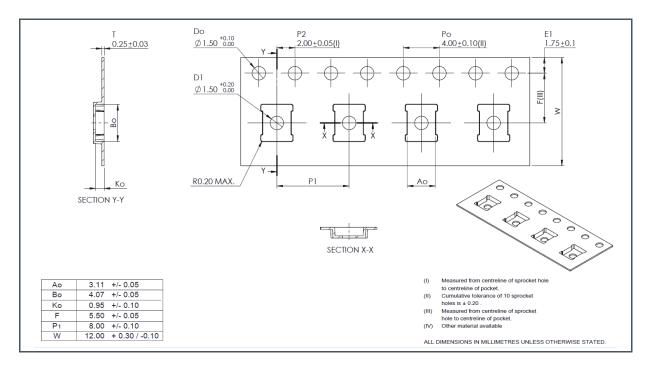
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Analog Front Er	nd					
Vout_dac	Output voltage DAC	dac_value<9:0> 0x3FF REF_ADC=1.6 V		1.6		V
Vout_afe	Output voltage range AFE		0.3		1.4	V
R _{RANGE}	Bias resistor trimming range	Across process and voltage corners, 25 °C		500		kΩ
C _{GPIO}	Load capacitance GPIO1/2				50	pF
LDO						
V _{LDO}		HV power supply if LDO_EN >1.26 V	2.3		5.5	V
		if LDO_EN < 0.56 V		V_{DD}		V
V _{LDO1V8}	Output voltage	Output voltage in operating mode		1.8		V
CLDO	Output capacitance	External blocking capacitance		1		μF
GPIO						
ViH	Input high	Switching threshold while rising edge of input signal is introduced	0.54		1.26	V
V _{IL}	Input low	Switching threshold while falling edge of input signal is introduced	0.54		1.26	V
Vон	Output high	Pin's source load current is 2 mA condition: E2=E4="1" (full available driver strength)			V _{DDIO} -0.4	V
Vol	Output low	Pin's sink load current is 2 mA condition: E2=E4="1" (full available driver strength)			0.4	V
SDA_MOSI, SCL	., EXTCLK, CSX	N, IFSEL, LDO_EN				
ViH	Input high	Switching threshold while rising edge of input signal is introduced	0.54		1.26	V



Symbol	Parameter	Conditions	Min	Тур	Max	Unit
VIL	Input low	Switching threshold while falling edge of input signal is introduced	0.54		1.26	V
f _{Clock_SPI}	SPI clock frequency			10		MHz
SDA_MOSI, MIS	so					
Vон	Output high	Pin's source load current is 6 mA condition: E2=E4="1" (full available driver strength)			V _{DDIO} -0.4	V
VoL	Output low	Pin's sink load current is 6 mA condition: E2=E4="1" (full available driver strength)			0.4	V
INT						
V _{OH}	Output high	Pin's source load current is 2 mA condition: E2=E4="1" (full available driver strength)			V _{DDIO} -0.4	V
V _{OL}	Output low	Pin's sink load current is 2 mA condition: E2=E4="1" (full available driver strength)			0.4	V

5 Package Drawings & Markings

Figure 5: Package Outline Drawing



- (1) All dimensions are in micrometers. Angles in degrees.
- (2) Dimensioning and tolerancing conform to ASME Y14.5M-1994.
- (3) This package contains no lead (Pb).
- (4) This drawing is subject to change without notice.

6 Tape & Reel Information

Figure 6: Tape Dimensions

7 Soldering & Storage Information

Figure 7: Solder Reflow Profile Graph

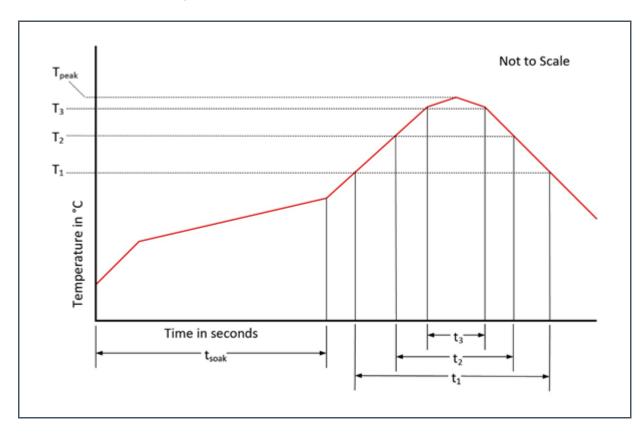


Figure 8: Solder Reflow Profile

Parameter	Reference	Device
Average temperature gradient in preheating		2.5 °C/s
Soak time	t _{soak}	2 to 3 minutes
Time above 217 °C (T1)	t ₁	Max 60 s
Time above 230 °C (T2)	t ₂	Max 50 s
Time above T _{peak} – 10 °C (T3)	t ₃	Max 10 s
Peak temperature in reflow	T _{peak}	260 °C
Temperature gradient in cooling		Max −5 °C/s

8 Revision Information

Changes from previous version to current revision v1-00	Page
This short datasheet is derived from v3-00 of full datasheet	

- Page and figure numbers for the previous version may differ from page and figure numbers in the current revision.
- Correction of typographical errors is not explicitly mentioned.

9 Legal Information

Copyrights & Disclaimer

Copyright ams-OSRAM AG, Tobelbader Strasse 30, 8141 Premstaetten, Austria-Europe. Trademarks Registered. All rights reserved. The material herein may not be reproduced, adapted, merged, translated, stored, or used without the prior written consent of the copyright owner.

Devices sold by ams-OSRAM AG are covered by the warranty and patent indemnification provisions appearing in its General Terms of Trade. ams-OSRAM AG makes no warranty, express, statutory, implied, or by description regarding the information set forth herein. ams-OSRAM AG reserves the right to change specifications and prices at any time and without notice. Therefore, prior to designing this product into a system, it is necessary to check with ams-OSRAM AG for current information. This product is intended for use in commercial applications. Applications requiring extended temperature range, unusual environmental requirements, or high reliability applications, such as military, medical life-support or life-sustaining equipment are specifically not recommended without additional processing by ams-OSRAM AG for each application. This product is provided by ams-OSRAM AG "AS IS" and any express or implied warranties, including, but not limited to the implied warranties of merchantability and fitness for a particular purpose are disclaimed.

ams-OSRAM AG shall not be liable to recipient or any third party for any damages, including but not limited to personal injury, property damage, loss of profits, loss of use, interruption of business or indirect, special, incidental or consequential damages, of any kind, in connection with or arising out of the furnishing, performance or use of the technical data herein. No obligation or liability to recipient or any third party shall arise or flow out of ams-OSRAM AG rendering of technical or other services.

RoHS Compliant & ams Green Statement

RoHS Compliant: The term RoHS compliant means that ams-OSRAM AG products fully comply with current RoHS directives. Our semiconductor products do not contain any chemicals for all 6 substance categories plus additional 4 substance categories (per amendment EU 2015/863), including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, RoHS compliant products are suitable for use in specified lead-free processes.

ams Green (RoHS compliant and no Sb/Br/Cl): ams Green defines that in addition to RoHS compliance, our products are free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material) and do not contain Chlorine (Cl not exceed 0.1% by weight in homogeneous material).

Important Information: The information provided in this statement represents ams-OSRAM AG knowledge and belief as of the date that it is provided. ams-OSRAM AG bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. ams-OSRAM AG has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. ams-OSRAM AG and ams-OSRAM AG suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

Headquarters

ams-OSRAM AG Tobelbader Strasse 30 8141 Premstaetten Austria, Europe

Tel: +43 (0) 3136 500 0

Please visit our website at www.ams.com

Buy our products or get free samples online at www.ams.com/Products
Technical Support is available at www.ams.com/Technical-Support

Provide feedback about this document at www.ams.com/Document-Feedback For sales offices, distributors and representatives go to www.ams.com/Contact For further information and requests, e-mail us at ams_sales@ams.com